

Nikolas Mahaffey & Kim Brand

www.1stMakerSpace.com

Copyright © 2023 by 1st Maker Space, Inc.

All rights reserved. No part of this book may be

reproduced, scanned, or distributed in any printed or
electronic form without permission.

Edition 2.0: January 2023

Original Edition © 2013 by Peter Gould

Contents

Table of Contents

GETTING STARTED .. 7

WHAT IS AN ARDUINO? ... 7
HOW DOES IT WORK? .. 8
SETTING UP YOUR COMPUTER.. 9

THE MC TRAINER BOARD .. 13

PROGRAMMING .. 14

THE SETUP() AND LOOP() FUNCTIONS ... 15
VARIABLES .. 16
ARRAYS .. 18
SOME THOUGHTS ON PROGRAMMING ... 20

PROJECTS ... 22

LESSON 1: STARTING WITH LEDS .. 23
Project 1.00 Blink .. 23
Project 1.01 Blink x2 .. 26
Project 1.02 Simple LED Chase ... 28
Project 1.03 Analog Write ... 30
Project 1.04 Pulse LED ... 32

LESSON 2: USING SERIAL .. 34
Project 2.00 Serial Printing .. 34
Project 2.01 Talking to the Board .. 36

LESSON 3: USING BUTTONS .. 40
Project 3.00 Read Input... 40
Project 3.01 Blink a LED with a Button 42
Project 3.02 AND Logic ... 44
Project 3.03 OR Logic ... 47

LESSON 4: USING THE PIEZO ... 49
Project 4.00 Using the Piezo ... 49
Project 4.01 Using Functions .. 51
Project 4.02 Generating a Specific Tone 53
Project 4.03 Adding Duration .. 55
Project 4.04 There is a Library for that 57

LESSON 5: USING NEOPIXELS .. 59
Project 5.00 Using the Neopixels .. 59

Project 5.01 Cycling Colors with a Button 63
Project 5.02 Using ColorHSV .. 66
Project 5.03 Individually addressing Neopixels using buttons .. 68
Project 5.04 Fading Neopixels Using Buttons 71

LESSON 6: USING THE POTENTIOMETER ... 75
Project 6.00 Using the Potentiometer 75
Project 6.01 Changing Color with the Potentiometer 77

LESSON 7: USING THE OLED .. 80
Project 7.00 Using the OLED .. 80
Project 7.01 Writing Text to the Screen 84
Project 7.02 Reaction Game Using OLED 86
Project 7.03 Drawing Shapes with the OLED 94

LESSON 8: USING THE LIGHT SENSOR .. 98
Project 8.00 Light Sensor .. 98
Project 8.01 Max and Min Brightness 100
Project 8.02 Mapping Light ... 103

LESSON 9: USING THE TEMPERATURE SENSOR 105
Project 9.00 Using the Temp Sensor 105
Project 9.01 Getting an Actual Temperature Reading 107
Project 9.02 Doing Something Based on Temperature 111

LESSON 10: USING THE IR RECEIVER AND EMITTER 115
Project 10.00 Decoding IR .. 115
Project 10.01 Sending IR .. 118

LESSON 11: EMULATE MOUSE ... 121
Project 11.00 Using the Board as a Mouse 121

LESSON 12: EMULATE KEYBOARD .. 124
Project 12.00 Using the Board as a Keyboard 124

ELECTRONICS ... 127

I = V/R .. 128
I = 6/2 = 3 AMPS OF CURRENT .. 128
V = I X R ... 128
ELECTRICITY FLOWS LIKE WATER ... 129
CIRCUITS ... 130
ELECTRONIC COMPONENTS .. 131

CIRCUITS ... 135

CIRCUIT 1: SINGLE LEDS ... 136
CIRCUIT 2: MOMENTARY SWITCHES (BUTTONS) 137
CIRCUIT 3: NEOPIXELS .. 138
CIRCUIT 4: PIEZO ELEMENT.. 139
CIRCUIT 5: INFRARED RECEIVER ... 140
CIRCUIT 6: INFRARED EMITTER ... 141

CIRCUIT 7: THUMBWHEEL POTENTIOMETER..................................... 142
CIRCUIT 8: LIGHT DEPENDENT RESISTOR 143
CIRCUIT 9: TEMPERATURE SENSOR .. 144
CIRCUIT 10: OLED ... 145

NEXT STEPS… ... 146

MC TRAINER PIN KEY ... 149

7

Getting Started

This book aims to get beginners started with the Arduino
Programming system – people who may not know anything about
programming or electronics. The best way to learn is by doing, so we
want to give you just enough information so that you can understand
what’s going on and then start doing things. This is how we started
with Arduino.

You’ll use our special Arduino Leonardo compatible board, the Micro
Controller (ΜC) Trainer, to help you get started immediately.

What is an Arduino?

It can be confusing at first. You might hear people say, “I have an
Arduino,” “Do you know Arduino?” or “I like to work with Arduino.”
Arduino is three things:

1.) The hardware. Arduino is based on a family of

microcontrollers built by Atmel. These microcontrollers are
miniature computers. They incorporate means of
communicating with the outside world (called Input/Output or
I/O in microcontroller language), memory (a combination of
volatile and non-volatile types*), and a computer processor.
All on one chip. *Volatile memory is erased when the power is
shut off from the chip. Non-Volatile memory persists even
when the power is off.

2.) The language. The founders of Arduino came up with a
unique programming language to instruct the chip on what to
do. The Arduino language is a subset of a popular
programming language used by many computer programmers
called C++. We will use Arduino (the language) to program
our MC. An Arduino program is called a ‘sketch’.

3.) The community. What makes Arduino unique is the
community of users around the world. And Arduino users like
to share. Having so many people using Arduino inspires us to
do projects we never imagined. It’s also easy to find examples
of hardware and software designed by other Arduino users to
aid in our understanding of how microcontrollers work and
what is possible.

8 Learn Arduino Programming

How does it Work?

The basic idea behind an Arduino project is to write a computer
program, called a sketch, to control the operation of an electronic
circuit – usually to send electronic commands to devices like LEDs or
motors or receive input from sensors like thermistors or pushbuttons.
The MC Trainer has several interesting electronic circuits built in.
You’ll soon be ready to write your sketches and build your own
circuits!

The basic process begins with ‘sketches’ (programming source code)
that are written and compiled, and the resulting ‘machine code’ is
uploaded to the MC Trainer using the Arduino IDE (integrated
development environment). Compiling a program converts your
program's English language version into the MC's binary commands.

Our first step is to download the IDE software to a PC or Mac and
configure it for use with the MC Trainer.

9

Setting up Your Computer

The setup is easy. You can find complete instructions for your
operating system here:

http://arduino.cc/en/Guide/HomePage

We’ll go through the setup process for Windows machines here.
Some parts of the process may differ for Linux and Mac OSX. Follow
the link above for instructions for these operating systems.

You first need to download the Arduino IDE. You can find it here:

https://www.arduino.cc/en/software

The most recent version of Arduino as of writing this book is 2.1.0.
Click to download the installer and follow the directions to install
Arduino on your PC.

Now let’s open the IDE and take a look at what each button does:

http://arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/software

10 Learn Arduino Programming

Verify: This button compiles the sketch to get it
ready to upload. When a sketch is compiled, it is
translated into a unique format readable by the
microcontroller. The compiler will tell you if there
are any errors and give you hints as to what’s
wrong. You don’t need to verify the sketch before
you try to upload, but it won’t upload if there are
any errors.

Upload: Compiles the sketch and uploads it to
your board in one step. Like the verify button, it
will return an error message if the sketch contains
errors.

The 1st Maker Space Microcontroller Trainer
appears like an Arduino Leonardo. Make sure the
IDE is configured for that board type.

11

When you open the IDE, a new tab with today’s date will appear.
You can write a sketch in the tab or copy and paste it from another
source.

You can download the sketches for our projects from our website:

http://www.1stmakerspace.com/MC-Trainer-sketches.html

Although downloading the sketches is an option, we suggest you type
them into the IDE, especially if you’re new to programming. It will
help you learn the particular syntax of the Arduino programing
language, and you’ll be able to start creating sketches of your own
faster than if you only downloaded or copied the sketches.

The first time you plug in your ΜCU Trainer, the computer will try to
find a driver. It will prompt you to download these drivers during
installation; click “install.” You may need to disconnect the MC
Trainer after the driver is installed and then reconnect it. You will
know that the MC Trainer is connected properly when you plug it into
the USB port, and you can select the serial port in the IDE (Tools >
Serial Port). You need to select the serial port before you can
continue.

http://www.1stmakerspace.com/MCU-Trainer-sketches.html

12 Learn Arduino Programming

The last thing you need to do before you can write and upload a
sketch is tell the IDE which type of board you are using. There are
many different types of Arduino boards. The MC Trainer is based on
the Leonardo, so select “Arduino Leonardo” under Tools > Boards.

The Arduino IDE has everything you need to write a sketch (a
computer program) and upload it to your MC Trainer. Once the
sketch is on the MC Trainer, it will run continuously if it has adequate
power. The sketch stays in the microcontroller’s memory when the
MC Trainer is unplugged from your computer. It will begin again
when the MC Trainer is powered back on. Your computer’s USB port
usually powers the MC Trainer, but you could also power it with a
USB “wall wart” charger, other power source with a USB connector or
the battery connection on the back. The battery connection on the back
should not be powered by more than 3V (3V = Two AA or Two AAA).

The Arduino IDE has a few features to help you with programming.
Programming keywords (words that do tasks) are color-coded orange
in the programming window. Pre-defined variables (labels for values
stored in memory) are color-coded blue. The main thing to remember
is that words that appear in a color other than black are special. If
you want to know what a keyword does, select the entire word and
press Crtl-Shift-F. This will automatically open the Arduino reference
webpage for the word. The IDE also does parentheses () and
bracket {} matching. Both parentheses and brackets have special
meanings in Arduino and are used in pairs. It is often helpful to find
the matching pair. The IDE will highlight the match to a parenthesis
or bracket when the cursor is on the right-hand side of one member
of a pair.

13

The MC Trainer Board

The MC Trainer board was built so that you can learn the basics of
Arduino without doing any soldering or wiring.
The brain of any Arduino is the microcontroller. A microcontroller is a
miniature computer with memory, a processor, and input and output
channels all in one package. Our microcontroller is the
ATmega32U4, manufactured by the Atmel Corporation. This is the
same microcontroller used on the Arduino Leonardo.

The microcontroller chip looks like a bug with 44 short metal legs.
These are the microcontroller pins. The legs are soldered to the
circuit board and provide electrical connections between the inside of
the chip and the rest of the board. Some pins bring power into the
chip (VCC) and provide paths to ground. Other pins are for
communication through USB and with another integrated circuit on
the board. The rest of the pins are input/output (I/O) pins. These
pins are used to communicate with or control other components on
the board. The Pin Key at the end of this book shows which pins are
connected to each of the circuits on the MC Trainer.

The USB hub of your computer powers the microcontroller and the
rest of the MC Trainer board. The USB connector on the MC Trainer
is located below the microcontroller. Your computer supplies 5V and
up to 500 mA of current. That’s just right for powering the
microcontroller and other components. Using the USB connection,
we also load sketches and communicate between the board and the
computer.

14 Learn Arduino Programming

Programming
A program, or sketch, is a set of instructions the MC Trainer will
execute. Computers take the world very literally. They need to
know precisely what to do in a language they understand. Luckily,
programming in Arduino is relatively simple. But you need to know
the rules and follow them exactly. Here are a few rules to remember:

• All sketches need at least two parts: the setup() and loop()

functions. We’ll explain them below.

• Most lines end with a semicolon; We usually press the Enter
key after the semicolon, but Arduino knows that the line ends
when it sees a semicolon.

• Arduino is case-sensitive. So the word ‘setup’ is different from
‘Setup.’ This is true of both Arduino commands and variables
that you create.

• When Arduino sees the two characters ‘//,’ it ignores
everything until the end of the line (when the Enter key is
pressed). This allows us to add human-readable comments to
our sketches. Arduino doesn’t need to know what our
comments mean. They’re used to describe to other people
what the program does and remind us what we thought when
we wrote it. You can also include a block of several lines of
comments in a sketch by starting the block with /* and ending
it with */.

In the remainder of the book, we underline the names of variables,
bold programming keywords, and other symbols when discussing
Arduino code.

15

The setup() and loop() functions

There are many different ways of writing sketches, but every sketch
must have at least two parts: the setup() and loop() functions. The
setup() function conventionally appears in the sketch before the
loop() function. A function is a section of code that runs together. To
distinguish a function from the rest of the sketch, it will always start
with a left-hand curly bracket { and end with a right-hand curly
bracket }. The basic form of a sketch looks something like this:

void setup(){

do a task;

do another task;

}

void loop(){

do the main tasks; and
more tasks; and more
tasks;
.

.

.

}

The keyword void must appear before these function names. We
discuss what it means later in this chapter, where we cover
functions.

The setup() function runs only once when the sketch begins. This
means it will run after a sketch is uploaded to the MC Trainer. If a
sketch is already on the MC Trainer, the setup() function will run
once when the MC Trainer is powered up. We typically do
“housekeeping” tasks in the setup() function to prepare things for the
sketch's main part. For example, we might set the modes of the
input/output pins that we will need in the sketch or get some initial
input from the user or a sensor.
After the setup() function runs once, the sketch enters the loop()
function. The lines of code in the loop() function are run one after
another. When we hit the } at the bottom of the loop() function, the
sketch returns to the top and runs the lines over again. This
continues as long as the MC Trainer is powered up.

16 Learn Arduino Programming

Variables

A variable is a label that we give to a piece of information. This gives
us a simple way to save, change, and access the information. We
need to tell the Arduino that we want to create a spot in its memory
to store the information by declaring a variable. We can declare a
variable in different sketch parts depending on where we want to use
it. We also have to tell the Arduino what type of variable we want so
it can reserve enough space and interpret it.

Computers see the world as a bunch of 0’s and 1’s. These are called
bits. The more bits we use for a variable, the greater the range of
values it can take on. The range of values we can store is 2 to the

power of the number of bits used (2# of bits). For example, with 8 bits,
we can store up to 256 different values (e.g., 0, 1, 2, 3, …, 255). With
16 bits, we can store 65536 distinct values.
In many cases, we want to be able to store both positive and
negative values, so we may use 16 bits to store values between -
32,768 and 32,767. Different variables in Arduino use either 8, 16, or
32 bits. We only have limited memory for these bits, so we want to
use the smallest number to complete the job. Some of the most
common variable types are:

• byte: an 8-bit variable representing a number between 0 and
255.

• char: also 8-bits, but Arduino interprets as a character like ‘a’
or ‘!’

• boolean: an 8-bit variable that can only hold true or false
values.

• int: a 16-bit integer. Integers are numbers without decimal
places. An int can hold positive or negative values, ranging
from -32768 to 32767.

• long: a 32-bit integer. The extra bits allow us to store values
between -2,147,483,648 to 2,147,483,647.

• float or double: these are 32-bit variables with decimal places
with values like 3.14159. Some of the bits are used to tell
where the decimal place goes. This leaves 6 to 7 digits of
precision. Many programmers avoid using float variables
since they require more complicated math.

17

To declare a variable, you tell Arduino what type of variable it is and
its name. You can also give it an initial value (which can be changed
later if you want). Some examples:

int start; //we’ll assign a value to this variable later in the code
int count = 10;
long pastime = 2350000;
char firstLetter = ‘a’;

A few more notes on variables. In some cases, you may need to
store values outside the normal range of the long type. We don’t
use them in our projects, but you can use an unsigned long to store
very large values. An unsigned long cannot hold negative numbers
(unsigned means that the +/- sign isn’t used), but the range is from 0
to 4,294,967,295.

Also, variables are stored in volatile memory, meaning their values
are lost when the MC Trainer loses power.

18 Learn Arduino Programming

Arrays

Each variable type can also be declared as arrays, which are groups
of values of the same type. For example, we can declare an int
variable with one value:

int myValue = 1;

Or an array with multiple values:

int myValue[] = {5,3,2,7,8,10,155};

Here we declared an array with 7 values. Arduino creates 7 places in
memory for these values. We can also tell Arduino to create the
spots in memory and put the values in later:

int myValue[7];

To assign a value to the first spot, we use a command like this:

myValue[0] = 155;

The number in the [] brackets is called the index. We want to change
or look at this spot in the array. The first spot always has an index
value of 0, and the last spot has an index value of 1 less than the
array's length. For example, an array of 7 values has index values
between 0 and 6.

19

Arrays of char variables work a little differently:

char myMessage[] = “Hello World”;

This creates an array with 12 places. This might look wrong since
there are only 11 characters in “Hello World” (Including the space).
Arduino creates an extra spot for a special character (called the null
termination) that keeps track of where the array ends. This is helpful
when we do things like sending the array to a computer screen.

Another special type of “variable” is a String. A String is not actually
a variable; it’s an object. Although it’s an object, a String can be used
like any other variable type. Like a char array, a String holds multiple
characters (computer programmers often call groups of characters
strings). Here’s how we declare a String:

String myMessage = “Hello World”;

Notice that we didn’t use the [] brackets. One special property is that
we can change the length of a String after we declare it:

String myMessage = “Part 1”;

myMessage = myMessage + “ and “ + “Part 2”;

Now myMessage has the value “Part 1 and Part 2”. We can check
the length of the String object with:

int howLong = myMessage.length();

This command looks weird because we give the variable's name,
followed by a period, and then ask for the length. This is an example
of a method for an object of the String class. You don’t need to
worry about this now, but you might see this type of syntax in other
parts of Arduino sketches. There are a lot of additional useful
methods for String objects. You can look at the Arduino reference
online to see all the others.

20 Learn Arduino Programming

Some Thoughts on Programming

Programming is a lot of fun once you get the hang of it. It’s like
solving a puzzle. You start with an idea, goal, or problem you’re
trying to solve. You start by breaking the problem into manageable
pieces: how do I collect the information I need? Which decisions am
I going to make based on the information? What are my outputs?
Then you translate these ideas into your computer language
(Arduino in this case), following all its rules. Then you test your
program and make improvements. It’s a great feeling to start with an
idea and then bring it to life through programming.

It’s important to do things step by step and make sure your code
works along the way. For example, you might write a program that
takes a sensor reading and controls a motor. If you write the entire
program, test it, and it doesn’t work, you’re left wondering, “Is the
problem with the sensor, the motor, or my program?” It makes more
sense to write the code for the sensor first and then output the results
to the serial monitor. You can move on to the motor once this works
and the results make sense. With the motor, you might start with
“hard coded” values to control it. For example, if the motor is
supposed to turn forward when the value of the variable
sensorOutput is > 10 and backwards when it is < 0, you can just
include the line sensorOutput = 12 and see what the motor does.
Then you can see what the motor does when you change the line to
sensorOutput = -2. Once you’re sure each part of the program
works on its own, you can focus on combining them.

Programming languages can seem rigid with their need for exact
syntax and structure. But as long as you follow the rules, you can do
anything. There’s tons of room for creativity. It will probably work if
you assemble a logical sequence of steps to solve a problem and put
it into the proper syntax. You need to check your syntax and rethink
your logic if it doesn't. Invariably, you’re going to learn something
from the experience. There’s almost always more than one way to do
the same task. As you become more skilled, you’ll be able to
accomplish more tasks with fewer lines of code. You’ll find shortcuts
and learn to write flexible, reusable code that will work in different
situations.

You’re now ready to jump into the projects. You can download these
projects from our website or type them in from the book. I suggest

21

that you type them in. It will help you become familiar with the
language and learn the syntax. Once you get a project to work, you
can tweak it. Test some hypotheses: “If I change this line, then that
will happen.” Try it. It’s a great way to learn.

22 Learn Arduino Programming

Projects

We covered downloading and setting up the Arduino IDE in the
Getting Started section. If you haven’t set up the IDE yet, do that
now. Let’s review the steps to loading a sketch onto the MC Trainer:

1.) Type the sketch into the Arduino IDE's programming window

or download it from 1stmakerspace.com and open it in the IDE.
2.) Connect the MC Trainer to your computer with the USB cable.

a. Select the “Leonardo” board from the Tools>Board
menu in the IDE.

3.) Select the available COM port from the Tools>Serial Port
menu in the IDE.

4.) Upload the sketch by clicking on the upload button in the IDE
toolbar.

Most Arduino platforms interact with circuits connected to the
microcontroller’s input/output pins. You can go to the MC Trainer
Board chapter to see how each of the circuits work. The pin
numbers for each circuit are listed at the back of the book in the MC
Trainer Pin Key. We use the same variable name in each sketch
when interacting with a pin. For example, the momentary switch on
the left-hand side of the board is always referred to as SW1. These
variable names are also listed in the Pin Key.

You can find sketches that use particular parts of the Arduino
language by looking at the Project Index at the back of the book.
The projects are divided into several sections. Each section focuses
on a different set of circuits and programming concepts (although
there’s a lot of overlap between the sections). After we present each
sketch, we go into detail in describing how the sketch works. We
underline variable names and bold Arduino statements and functions
when describing the sketch's parts.

Now let’s get started

http://www.1stmakerspace.com/MCU-Trainer-sketches.html

23

Lesson 1: Starting with LEDs

An LED, or Light Emitting Diode, is an electronic component that
emits light when an electrical current flows through it.

Project 1.00 Blink

Nearly everyone starts by learning how to blink an LED. Let’s take
a second to think about how a light blinks. First, a light turns on,
then waits for some amount of time, then turns off, waits for some
amount of time, and repeats. That process is what we need to
create in Arduino code. There are three main components to this
sketch:

Keyword Description Parameters

pinMode pinMode is used to set a pin
as either an input or an
output

1. Pin number
2. INPUT / OUTPUT

Example:
 pinMode(13, OUTPUT);

digitalWrite digitalWrite is used to write
a pin either as a digital HIGH
(5v) or a digital LOW (0v)

1. Pin number
2. HIGH / LOW

Example:
 digitalWrite(13, HIGH);

delay delay is used to wait for a
specific amount of time in
milliseconds

1. Time in milliseconds to
delay the program

Example:
 delay(1000);

24 Learn Arduino Programming

Project Code:

///

//Project 1.00 Blink

byte LED1 = 13;
void setup(){

pinMode(LED1,OUTPUT);
}

void loop(){
digitalWrite(LED1,HIGH);
delay(1000);
digitalWrite(LED1,LOW);
delay(1000);

}

///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Let’s take a closer look at how this sketch works. We declare one
byte variable at the top of the sketch. It is a global variable since it is
declared outside the setup() function, loop() function, or any other
function. This means we can use it anywhere else in the sketch and it
will be recognized. LED1 gets assigned the value 13 because that’s
the pin number (on the microcontroller) that LED1 is connected to.

byte LED1 = 13;

Every sketch needs one setup() and one loop() function. The
setup() function runs only once. That’s all we need to set the
pinMode of the LED to output so that we can switch it on and off:

void setup(){

pinMode(LED1,OUTPUT);
}

Now comes the loop() function. This function will run repeatedly. At
the top of the block comes the digitalWrite statement. This powers
the pin attached to LED1 with 5 V, causing the LED to light up.

void loop(){
digitalWrite(LED1,HIGH);

LED1 will remain in a HIGH state until we tell it otherwise or we
disconnect the MC Trainer from its power source. We want it to stay
on for only a second, so we wait 1000 milliseconds (1 second):

25

delay(1000);

And then switch the pin to LOW. Now the LED switches off:

digitalWrite(LED1,LOW);

We keep it off for another second and then finish the
loop() function:

delay(1000);

}

The closing bracket tells the MC Trainer to go back to the top of the
loop() function and repeat it.

Try seeing how fast the LED can blink by changing the number in the
delay function. Just a hint, it can blink faster than we can see!

26 Learn Arduino Programming

Project 1.01 Blink x2

In this project, we bring a second LED, LED3, into the mix. We are
essentially doing the same thing as the last project, but this time we
are using two LEDs.

Project Code:

///

//Project 1.01 Blink x 2

byte LED1 = 13;
byte LED3 = 7;

void setup(){

pinMode(LED1,OUTPUT);
pinMode(LED3,OUTPUT);

}

void loop(){
digitalWrite(LED1,HIGH);
digitalWrite(LED3,HIGH);
delay(1000);
digitalWrite(LED1,LOW);
digitalWrite(LED3,LOW);
delay(1000);
digitalWrite(LED1,HIGH);
digitalWrite(LED3,LOW);
delay(1000);
digitalWrite(LED1,LOW);
digitalWrite(LED3,HIGH);
delay(1000);
digitalWrite(LED1,LOW);
digitalWrite(LED3,LOW);
delay(1000);

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Like all sketches, this simple sketch includes a setup() and a loop()
function. Before the setup() function, we declare two variables that
refer to the pin numbers for LED1 and LED3:

byte LED1 = 13;

byte LED3 = 7;

27
145

In the setup() function, we set both pins to OUTPUT using two
pinMode statements:

pinMode(LED1,OUTPUT);
pinMode(LED3,OUTPUT);

In the loop() function, we first switch both LEDs on by setting the pins
to HIGH using two digitalWrite statements:

void loop(){

digitalWrite(LED1,HIGH);
digitalWrite(LED3,HIGH);
delay(1000);

After a 1-second delay, we turn both LEDs off:

digitalWrite(LED1,LOW);
digitalWrite(LED3,LOW);
delay(1000);

Next, we turn only LED1 on:

digitalWrite(LED1,HIGH);
digitalWrite(LED3,LOW);
delay(1000);

And then switch so that only LED3 is on:

digitalWrite(LED1,LOW);
digitalWrite(LED3,HIGH);
delay(1000);

Finally, we turn both LEDs off for 1 second before the loop() function
reaches its closing bracket } and begins again at the top:

digitalWrite(LED1,LOW);
digitalWrite(LED3,LOW);
delay(1000);

}

P
ro

je
c
ts

 1

P
ro

je
c
ts

 1

28 Learn Arduino Programming

Project 1.02 Simple LED Chase

In this project we will use all four LEDs to blink a chase pattern. This
example shows a very simple way to create a pattern using
digitalWrites and delays.

Project Code:

///
// Project 1.02 LED Chase

byte LED1 = 13;
byte LED2 = 6;
byte LED3 = 7;
byte LED4 = 8;

void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
 pinMode(LED4, OUTPUT);
}

void loop() {
 digitalWrite(LED4, LOW);
 digitalWrite(LED1, HIGH);
 delay(250);
 digitalWrite(LED1, LOW);
 digitalWrite(LED2, HIGH);
 delay(250);
 digitalWrite(LED2, LOW);
 digitalWrite(LED3, HIGH);
 delay(250);
 digitalWrite(LED3, LOW);
 digitalWrite(LED4, HIGH);
 delay(250);
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Here we set the four variables needed to represent the pins that the
LEDs are attached to:

byte LED1 = 13;
byte LED2 = 6;
byte LED3 = 7;
byte LED4 = 8;

Next, we need to tell the microcontroller that these pins are outputs:

29
145

void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
 pinMode(LED4, OUTPUT);
}

After that, we can sequentially turn on and off the LEDs to represent
a chase pattern. To do this, we have to turn the last LED off, the next
LED on, and then wait.

void loop() {
 digitalWrite(LED4, LOW);
 digitalWrite(LED1, HIGH);
 delay(250);
 digitalWrite(LED1, LOW);
 digitalWrite(LED2, HIGH);
 delay(250);
 digitalWrite(LED2, LOW);
 digitalWrite(LED3, HIGH);
 delay(250);
 digitalWrite(LED3, LOW);
 digitalWrite(LED4, HIGH);
 delay(250);
}

What you may have noticed about the code above is that something
happened over and over again. Usually when things happen over and
over again it is a sign that it should be in some kind of loop and/or
function.

30 Learn Arduino Programming

Project 1.03 Analog Write

In this project you will learn about a new function called analogWrite.
This function is useful for setting the brightness of LEDs. It can also
be used to set the speed of motors, servo motor position, generating
audio tones, and more.

The MC Trainer can only produce values of 0v and 5v but what
happens when you need 2.5v? Simply put, the MC trainer cannot
produce 2.5v. Instead, what it can do is switch a pin between 0v and
5v very quickly and produce an average voltage of 2.5v. This process
is known as PWM.

It is important to note that this can only be done with certain pins. In
our case, LED1 and LED2 can be used to do PWM.

This also introduces the Idea of duty cycle. Duty cycle is the ratio of
how long a signal is on VS how long a signal is off. In this case the
duty cycle would be 50%.

0

1

2

3

4

5

6

V
O

LT
A

G
E

TIME

50% DUTY CYCLE

31
145

Project Code:

///
// 1.03 - Analog Write

byte LED1 = 13;

void setup() {
 pinMode(LED1, OUTPUT);
 analogWrite(LED1, 127);
}

void loop() {

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

The analogWrite function takes an 8-bit value between 0 – 255. 0
represents 0v and 255 represents 5v. The average voltage produced
by that pin can be calculated with the equation: (analogValue * 5) /
255, with analogValue being the 8-bit number passed to the
analogWrite function. For example, (127 * 5) / 255 = 2.49V. So, 127
will produce 2.49 volts.

analogWrite(LED1, 127);

When you run the code, the LED will be at half brightness.

32 Learn Arduino Programming

Project 1.04 Pulse LED

This project demonstrates the full range of the analogWrite function,
and how that can be used to create a pulsing effect.

Project Code:

///
// 1.04 - Pulse LED

byte LED1 = 13;

void setup() {
 pinMode(LED1, OUTPUT);
}

void loop() {
 byte wait = 10;

 for (int i = 0; i < 255; i++) {
 analogWrite(LED1, i);
 delay(wait);
 }

 for (int i = 255; i > 0; i--) {
 analogWrite(LED1, i);
 delay(wait);
 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Before we jump into the code let’s take a look at what a for-loop is. A
for-loop is a way to repeat a chunk of code a specified number of
times. See the table below for a breakdown of a for-loop structure:

Part Description

for Loop type

Int i = 0; This creates a variable for the
loop to keep track of how many
times it’s looped

i < 255; This is a conditional. The for-
loop will continue to run while
this is true. In this case, i is less
than 255

i++ This increments the i variable

33
145

by 1 every time the loop
executes

{
analogWrite(LED1, i);
delay(wait);
}

This is the code that runs every
time the loop executes

for-loops can be a foreign concept. For a video explanation please
visit:

https://www.youtube.com/watch?v=b4DPj0XAfSg

Here in the program a for-loop is used to count 0 – 255, slowly
increasing the brightness of the LED. The index of the for-loop (i)is
passed to the analogWrite function as the for-loop loops. A small
delay is added after each analogWrite so the changes can be
perceived by the human eye.

 for (int i = 0; i < 255; i++) {
 analogWrite(LED1, i);
 delay(wait);
 }

Here the program counts down 255 – 0, slowly decreasing the
brightness of the LED.

 for (int i = 255; i > 0; i--) {
 analogWrite(LED1, i);
 delay(wait);
 }
}

https://www.youtube.com/watch?v=b4DPj0XAfSg

34 Learn Arduino Programming

Lesson 2: Using Serial

Serial refers to the process of sending or receiving data one bit at a
time, sequentially, over a communication channel or computer bus.
It's a built-in object that represents the serial port on the Arduino to
send and receive data.

Project 2.00 Serial Printing

In this project you will be introduced to Serial. Serial is a great way to
see what is happening while your projects are running. Serial allows
you to print strings of text, numbers and more out into a “Serial Port”.
To open the Serial Port, click the magnifying glass in the top right of
the Arduino IDE, or press ctrl + shift + m.

Here is what the magnifying glass will look like:

When you open the Serial port, it will appear in a window at the
bottom of the screen. This is where the things you print will be
displayed. Make sure to change this to “Newline” if it’s not already.

35
145

Project Code:

///
// 2.00 - Serial Printing

void setup() {
 Serial.begin(9600);
}

void loop() {
 Serial.print("My name is: ");
 Serial.println("YourNameHere");
 delay(1000);
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

This line initializes the Serial port for communication. The 9600 value
passed is the “Baud rate”. Baud rate is the rate of bits transmitted per
second. Because our microcontroller has a built-in USB interface, the
number we pass here does not matter.

 Serial.begin(9600);

There are a few common ways to print information to this screen. We
can use the Serial.print and/or Serial.println methods.

The difference is that the Serial.println method will print a new line
after it prints what was passed to it. It is important to note that if the
data being printed is a string of characters, they need to be enclosed
in quotations. If it is a single character, it can be enclosed in
quotations or apostrophes. Otherwise, numbers and variables do not
need to be enclosed in anything special.

 Serial.print("My name is: ");
 Serial.println("YourNameHere");

Change out the “YourNameHere” string with your name (enclosed in
quotation marks).

Try making them both just Serial.print and see what happens!

A delay is needed to keep our MC Trainer from printing thousands of
lines of text in a few seconds!

36 Learn Arduino Programming

 delay(1000);

Make sure and open the Serial port to see what is being printed!

Project 2.01 Talking to the Board

In the last project the MC Trainer sent messages to the computer
using Serial. In this project we will do the opposite! We can also use
the Serial Port to send messages to the MC Trainer! These
messages will pop up in the Serial port when you type them in and
send them.

Project Code:

//
// 2.01 - Talking to the board

void setup() {
 Serial.begin(9600);
}

void loop() {
 while (Serial.available() == 0) {
 ;
 }

 byte messageSize = Serial.available();
 char message[messageSize];

 for (byte i = 0; i < messageSize; i++) {
 message[i] = Serial.read();
 }

 Serial.print("Message sent: "); Serial.println(message);
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

There are a few simple steps when we want to use the computer to
communicate to the MC Trainer. Firstly, we must wait for Serial data
to be sent from the Serial Port. The Serial.available() method will
return the amount of data available from the Serial Port.

37
145

Let’s take a look at another kind of loop. In this program we use
what’s called a while-loop. This kind of continuously runs while the
conditional is true. See the table below for a breakdown of the while-
loop used in the program:

Type while-loop

Conditional Serial.available() == 0

Code executed ;

The goal for the following lines of code is to keep us waiting in one
spot in the program until we receive Serial data from the computer.

Serial.available() returns the amount of Serial data available to read
from the computer. When it returns 0, that means there is no data to
read. So, while there is no data to read, execute the code inside of
the brackets “{}”.

The code inside of the brackets Is just a semi-colon. This essentially
does nothing but take up some time. It’s an easy way to wait until
something happens to move on. We are stuck in this while-loop
(doing nothing) until our condition is met.

 while (Serial.available() == 0) {
 ;
 }

The next thing we need to do (After we’re out of the while-loop,
meaning a message has been sent from the Serial port) is create a
variable that can hold the incoming message. This will be an array of
variable type char because char type variables hold a character.
Using an array will allow us to store multiple characters in a
convenient way.

How will we know how to size our array? In other words, how will we
know how many spots our array needs for the incoming message?
For that, we can use Serial.available() again. Remember that
Serial.available() returns the amount of Serial data that is available
to read. We can assign this returned value to a byte type for later
use.

byte messageSize = Serial.available();

Once we know the size of the message, we create a character array
to hold that message. First, we make the array type “char”, then

38 Learn Arduino Programming

name it “message”, then we size it with the variable we made earlier
“[messageSize]”.

 char message[messageSize];

Let’s do an example. Let’s say our message is “Hello”. What you
have to know is that although it looks like there are only 5 characters
that make up the word “Hello”, there are really six when it is sent over
from the computer. There is ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, and ‘\0’. The ‘\0’ is called
a NULL terminator and signifies the end of a string of text.

Serial.available() will return the number 6 (Indicating that there are 6
characters to be read) and we can now create a variable to hold all of
the characters.

Now we have a character array with 6 empty spots. Next, we need to
use the Serial.read() method to read the Serial data. This method will
read one byte (character) at a time sequentially. That means that
calling it once will return the first character of what is being sent over,
calling it again will read the second, and so on. As the incoming
message is being read it needs to be stored in the array we created
earlier.

Since we stored the length of the message in the messageSize
variable, we can tell a for-loop how many times it needs to loop to
read the entire message. The for-loop loops as many times as the
message is long, and puts the characters read into the message
array. We use the variable i to keep track of our spot in the array.

for (byte i = 0; i < messageSize; i++) {
 message[i] = Serial.read();
}

Visualized is the character array below when the for-loop finishes
with the example “Hello” (Arrays start at Index 0):

Index -> 0 1 2 3 4 5

Character -> H e l l o /0

Once the message is stored into the array, it is printed.

 Serial.print("Message sent: "); Serial.println(message);
}
//

39
145

To send data to the MC Trainer you first have to open the Serial
monitor. Once the monitor is open, the text box at the top of it can be
used to send a message. All you need to do is type in a message and
hit the enter button. The computer will then attempt to send the
message over Serial.

40 Learn Arduino Programming

Lesson 3: Using Buttons

A button, also known as a push-button or momentary switch, is a
simple device that allows a user to interact with a piece of machinery
or electronic device. Buttons complete or break an electrical circuit
when pressed, allowing for control of an electrical system.

Project 3.00 Read Input

In this project you will be introduced to buttons. By the end of this
project, you will know how to read the state of a button (on or off) and
how to store that in a bool type variable.

There are two buttons on the MC Trainer we can use, SW1 and SW2.
SW1 is on the left side of the board and SW2 is on the right side. The
abbreviation “SW” stands for switch.

Project Code:

//
// 3.00 - Read Input
byte SW1 = 1;

void setup() {
 Serial.begin(9600);
 pinMode(SW1, INPUT);
}

void loop() {
 bool buttonState = digitalRead(SW1);
 Serial.print("The state of the button is: "); Serial.println(buttonState);
 delay(250);
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of

41
145

a new Arduino sketch and paste / type in the above text.

SW1 is connected to pin 1 so we first create a variable to represent
our button in code:

byte SW1 = 1;

Next, in setup(), we initialize Serial so we can get feedback from our
microcontroller:

 Serial.begin(9600);

Then because we are trying to read something from the outside world
(a button press), SW1 is an input.

 pinMode(SW1, INPUT);

If you think about a button, it is either pressed or not pressed, there is
no in-between. In similar terms, it is HIGH or LOW, ON or OFF,
TRUE or FALSE, 1 or 0. A bool type variable is strictly meant to hold
values like this, 1 or 0. So to store our buttons current state we will
use a bool type variable.

 bool buttonState

The digitalRead function can be used to read the digital state of a
pin. This function will return a 1 if the voltage is HIGH (the button is
not pressed) and a 0 if the voltage is LOW (the button is pressed).

 bool buttonState = digitalRead(SW1);

Once read, the state of the button is printed out to the Serial port.
Make sure to open it so you can see what is being printed!

 Serial.print("The state of the button is: "); Serial.println(buttonState);

Lastly, there is a delay so thousands of lines don’t print out at once
and the loop() is ended.

 delay(250);
}

Press SW1 and watch the button state change in the Serial monitor!

42 Learn Arduino Programming

Now that we can read the button state, we can combine that with
programmatic logic to make decisions on what to do when the button
is pressed!

Project 3.01 Blink an LED with a Button

In the last project we learned how to read the state of a button. In this
project we will learn how to make a decision based on the buttons
state that we read. The goal of this project is to turn on an LED when
the button is pressed!

Project Code:

///
// 3.01 - Blink an LED with button press

byte SW1 = 1;
byte LED1 = 13;
bool pressed = 0;

void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(SW1, INPUT);
}

void loop() {
 bool buttonState = digitalRead(SW1);

 //digitalWrite(LED1, !buttonState);

 if (buttonState == pressed) {
 digitalWrite(LED1, HIGH);
 }
 else {
 digitalWrite(LED1, LOW);
 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

The pressed variable makes the code easier to read. A good
programmer makes their code easier for others and themselves to
read. By adding the pressed variable, it is easy to see when is going
on in the code.

43
145

bool pressed = 0;

Here we are using an if-statement to make a decision. If the button
is pressed, turn the LED on. Else, turn the LED off. The “==” is used
to make a comparison to see if something is equal. Using the “=”
operator will assign a value to the variable. This is a very common
mistake in programming!

 if (buttonState == pressed) {
 digitalWrite(LED1, HIGH);
 }
 else {
 digitalWrite(LED1, LOW);
 }

Like most things in programming, there is more than one way to do it!
Below is a “one liner” that can be used to do the same thing. It
digitalWrites the opposite of what was read from the digitalRead
function. “!” is the NOT operator. When applied, this operator will turn
a 1 into a 0 and a 0 into a 1. This inversion is because the button
reads a 0 when pressed and a 1 when not pressed. So, when the
button is pressed LED1 is written a 1, and when the button is not
pressed LED1 is written a 0 with the inversion.

 digitalWrite(LED1, !buttonState);

Try to make a different LED turn on with SW2!

44 Learn Arduino Programming

Project 3.02 AND Logic

In this project you’ll learn about using AND logic with buttons to turn
on LED1 only when both buttons are pressed.

What if you wanted to only turn on an LED when SW1 and SW2 were
pressed at the same time? This is where AND logic comes into play.
Our if-statements need to get a little more complicated to make this
happen!

Project Code:

///
// 3.02 – AND Logic

byte SW1 = 1;
byte SW2 = 0;
bool pressed = 0;

byte LED1 = 13;

void setup() {
 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);

 pinMode(LED1, OUTPUT);
}

void loop() {
 bool SW1State = digitalRead(SW1);
 bool SW2State = digitalRead(SW2);

 if (SW1State == pressed && SW2State == pressed) {
 digitalWrite(LED1, HIGH);
 }
 else {
 digitalWrite(LED1, LOW);
 }

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

We know that we want to have an LED turn on when both buttons are
pressed but how do we do it? Breaking down a problem into smaller,
more manageable chunks is a priceless skill in programming. That
being said, let’s break this down.

45
145

First, we need to create the variables to represent our button pins, a
variable to represent the pressed state, and a variable to represent
our LED:

byte SW1 = 1;
byte SW2 = 0;
bool pressed = 0;

byte LED1 = 13;

Next, we need to set the correct pinModes for the pins we plan to
use. Buttons are inputs and LEDs are outputs:

void setup() {
 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);

 pinMode(LED1, OUTPUT);
}

Now we need to create the loop() functions code. The first thing we
need to know is if the buttons are being pressed. To do that we
digitalRead the button pins and store them in bool type variables for
later use:

void loop() {
 bool SW1State = digitalRead(SW1);
 bool SW2State = digitalRead(SW2);

Next, we need to make a decision. How do we make a decision? We
need to use an if-statement. The decision we need to make is if
SW1 AND SW2 are pressed.

 if (SW1State == pressed && SW2State == pressed) {

As promised, the conditional got a little more complicated. The “&&”
symbols in the conditional are new. This is the programmatic way to
say AND. The conditional will evaluate to be true if what is on the left
side of the “&&” symbols and what is on the right side of the “&&”
symbols are both true. The left AND right sides need to be true for
the code to execute.

 If true, it turns LED1 on:

 digitalWrite(LED1, HIGH);

46 Learn Arduino Programming

 }

Else, if it is not true, it turns LED1 off:

 else {
 digitalWrite(LED1, LOW);
 }

AND actually has a very strict definition in programming. It can be
represented by what is known as a “Truth Table”. It shows all the
possible outputs based on the inputs and logic being applied. Here is
the AND Logic table:

Input A Input B Output

0 0 0

0 1 0

1 0 0

1 1 1

As you can see, the output is only 1 if both inputs are 1. In other
words, if input A AND input B are 1, the output is a 1.

For a more familiar example let’s make the table based on our
program’s inputs:

SW1State == pressed SW2State == pressed Output

0 0 0

0 1 0

1 0 0

1 1 1

As you can see, the output is only a 1 if SW1State and SW2State
equal 1; I.e., both buttons are pressed.

47
145

Project 3.03 OR Logic

In this project you’ll learn about using OR logic with buttons to turn on
LED1 when SW1 OR SW2 are pressed.

What if you wanted to turn on an LED when SW1 was pressed OR
SW2 was pressed? AND logic won’t work for this. We need to learn
how to use OR logic to do this.

Project Code:

///
// 3.03 - OR Logic
// "&&" is the logical "and" comparator. See truth table below.

byte SW1 = 1;
byte SW2 = 0;
bool pressed = 0;

byte LED1 = 13;

void setup() {
 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);

 pinMode(LED1, OUTPUT);
}

void loop() {
 bool SW1State = digitalRead(SW1);
 bool SW2State = digitalRead(SW2);

 if (SW1State == pressed || SW2State == pressed) {
 digitalWrite(LED1, HIGH);
 }
 else {
 digitalWrite(LED1, LOW);
 }

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

All of the code up to the if-statement is the same as the last project,
so we’ll skip to the difference.
The difference between this project and the last project is instead of
having the “&&” symbols in the conditional, we now have the “||”
symbols. This is the programmatic way to say OR.

48 Learn Arduino Programming

 if (SW1State == pressed || SW2State == pressed) {

The conditional will evaluate to be true if what is on the left side of the
“||” symbols or what is on the right side of the “||” symbols is true. The
left OR right side need to be true for the code to execute.

 If true, it turns LED1 on:

 digitalWrite(LED1, HIGH);
 }

Else, if it is not true, it turns LED1 off:

 else {
 digitalWrite(LED1, LOW);
 }

OR has a similarly strict definition in programming. Here is the OR
logic truth table:

Input A Input B Output

0 0 0

0 1 1

1 0 1

1 1 1

As you can see, the output is 1 if either input is 1. In other words, if
input A OR input B is 1, the output is a 1.

Again, for a more familiar example let’s make the table based on our
program’s inputs:

SW1State == pressed SW2State == pressed Output

0 0 0

0 1 1

1 0 1

1 1 1

As you can see, the output is a 1 if SW1State or SW2State equal 1;
I.e., either button is pressed.

49
145

Lesson 4: Using the Piezo

A piezoelectric buzzer, or piezo buzzer, is a small, simple electronic
device that produces sound based on the piezoelectric effect, a
phenomenon where certain materials generate an electric charge
when mechanical stress is applied. The core component of a piezo
buzzer is a piezoelectric element—often a ceramic disc—placed
between two conductive plates. When an oscillating electric signal is
applied, the disc expands and contracts rapidly, creating sound
waves that produce a buzzing noise. The frequency of the electric
signal determines the pitch of the sound. These buzzers are found in
a variety of devices like alarm clocks, microwave ovens, smoke
detectors, and toys due to their compact size, reliability, and low
power consumption.

Project 4.00 Using the Piezo

This project shows how to use the MC Trainer to produce a noise
from the piezo onboard when SW1 is pressed.

Project Code:

///
// 4.00 - Using the Piezo

byte piezoPin = 12;

byte SW1 = 1;
bool pressed = LOW;

void setup() {
 pinMode(piezoPin, OUTPUT);
 pinMode(SW1, INPUT);

50 Learn Arduino Programming

}

void loop() {
 if (digitalRead(SW1) == pressed) {
 digitalWrite(piezoPin, HIGH);
 delay(1);
 digitalWrite(piezoPin, LOW);
 delay(1);
 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

The piezo is connected to pin 12 on the MC Trainer.

byte piezoPin = 12;

Since we are writing to this pin, it’s an output.

 pinMode(piezoPin, OUTPUT);

The piezo buzzer creates sound through the rapid physical
deformation of an internal crystal. When a voltage is applied, the
crystal changes shape. By quickly fluctuating the applied voltage, a
sound is generated with a frequency that matches the rate of these
voltage changes. Since we know how to turn a pin on and off
(digitalWrite) we can create noise! To prevent a continuous
annoying buzzing, we will only write to the Piezo when SW1 is
pressed.

 if (digitalRead(SW1) == pressed) {
 digitalWrite(piezoPin, HIGH);
 delay(1);
 digitalWrite(piezoPin, LOW);
 delay(1);
 }

Frequency, expressed in Hertz (Hz), indicates the number of cycles
that occur per second. In the context of a piezo buzzer,
understanding the frequency requires identifying the number of these
cycles within a one-second timeframe. A “cycle”, in this case, is
defined as one complete sequence of the buzzer turning “on” and
then “off”. This sequence is also referred to as a “period”, marking the
duration of one full cycle of operation.

In our case the period is 2 milliseconds. It takes 2 milliseconds to

51
145

make a full cycle. How many of those cycles happen in one second?
Remember, 1 second is 1000ms.

1000ms / 2ms = 500Hz

The noise you hear is at a frequency of 500Hz!

Project 4.01 Using Functions

At this point in our programming journey, we need to be using
functions in our programs. Functions make programming much easier
to read and write. They make doing the same thing repeatedly much
easier. This program is actually the exact same as the last but put
into a function.

Project Code:

///
// 4.01 - Using functions

byte piezoPin = 12;

byte SW1 = 1;
bool pressed = LOW;

void setup() {
 pinMode(piezoPin, OUTPUT);
 pinMode(SW1, INPUT);
}

void loop() {
 if (digitalRead(SW1) == pressed) {
 BuzzPiezo();
 }
}

/*
 It is good practice to put a function description here.
 Example:
 This function applies alternating voltage to the Piezo speaker
 at an period of 2ms.
*/
void BuzzPiezo() {
 digitalWrite(piezoPin, HIGH);
 delay(1);
 digitalWrite(piezoPin, LOW);
 delay(1);

52 Learn Arduino Programming

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

This time in the loop instead of a bunch of code you’ll only see a few
lines. This line calls the function BuzzPiezo. Inside of this function is
the code from the loop() function from the last program. The program
just calls this function over and over again in the loop() if the SW1 is
pressed.

void loop() {
 if (digitalRead(SW1) == pressed) {
 BuzzPiezo();
 }
}

When making a function it is good practice to put a function
description right above it in a comment. This will remind you or tell
someone else what the function does. Using the “/* */” format here
will allow you to easily write a multi-line comment.

/*
 It is good practice to put a function description here.
 Example:
 This function applies alternating voltage to the Piezo speaker
 at an period of 2ms.
*/

Remember a function has a few parts. The return type, function
name, parameters if it takes any, and the code inside of the brackets.
See the table below for a breakdown of the BuzzPiezo function:

Part Name Part

Return Type Void
(Void means it does not return
anything)

Function Name BuzzPiezo

Parameters None in this case

Code inside brackets digitalWrite(piezoPin, HIGH);
 delay(1);
 digitalWrite(piezoPin, LOW);
 delay(1);

void BuzzPiezo() {

53
145

 digitalWrite(piezoPin, HIGH);
 delay(1);
 digitalWrite(piezoPin, LOW);
 delay(1);
}

Project 4.02 Generating a Specific Tone

In this project you will learn how to write a function that will generate
a specific tone.

Project Code:

///
// 4.02 - Generating a Specific Tone

byte SW1 = 1;

bool pressed = LOW;

byte piezoPin = 12;

void setup() {
 pinMode(piezoPin, OUTPUT);
 pinMode(SW1, INPUT);
}

void loop() {
 if (digitalRead(SW1) == pressed) {
 BuzzPiezo(50);
 }
}

/*
 This function will generate a certain tone give a frequency in Hz.
*/
void BuzzPiezo(long frequency) {
 long period = 1000 / frequency;
 digitalWrite(piezoPin, HIGH);
 delay(period / 2);
 digitalWrite(piezoPin, LOW);
 delay(period / 2);
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

The content of the loop() function is just like the last project except
for this time the function takes a parameter (50). This parameter

54 Learn Arduino Programming

represents the frequency in Hz that we want the piezo to generate.

 if (digitalRead(SW1) == pressed) {
 BuzzPiezo(50);
 }

We are trying to create a certain tone, and to do that, we need to
figure out something called a "period." But how do we find out what
the period is from a frequency?

Well, a period is just the opposite (or reciprocal) of frequency. So, if
we take 1 and divide it by the frequency, we get the period. However,
since we're working with time in milliseconds, not seconds, we need
to adjust our calculation. Instead of just 1 divided by the frequency,
we use 1000 (because there are 1000 milliseconds in a second)
divided by the frequency. That gives us our period in milliseconds!

 long period = 1000 / frequency;

Remember that the period is the time for the piezo to turn on and off.
This means that we have to delay by half the period after we turn it
on and delay by half the period after we turn it off.

 digitalWrite(piezoPin, HIGH);
 delay(period / 2);
 digitalWrite(piezoPin, LOW);
 delay(period / 2);

We’ve now created a function to generate any frequency we want!

55
145

Project 4.03 Adding Duration

Building on the last project, in this project we will be adding duration
to our function. This means that we can play different tones for
different amounts of time.

Project Code:

///
// 4.03 - Adding Duration

byte SW1 = 1;

bool pressed = LOW;

byte piezoPin = 12;

void setup() {
 pinMode(piezoPin, OUTPUT);
 pinMode(SW1, INPUT);
}

void loop() {
 if (digitalRead(SW1) == pressed) {
 // Hz ms
 BuzzPiezo(5, 1000);
 BuzzPiezo(50, 1000);
 BuzzPiezo(500, 1000);
 }
}

/*
 This function will generate a certain tone for a certain time
 given a frequency in Hz and a duration in ms.

*/
void BuzzPiezo(long frequency, long duration) {
 long period = 1000 / frequency;
 long cycles = duration / period;

 for (long i = 0; i < cycles; i++) {
 digitalWrite(piezoPin, HIGH);
 delay(period / 2);
 digitalWrite(piezoPin, LOW);
 delay(period / 2);
 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

56 Learn Arduino Programming

This time, the BuzzPiezo function is called with two parameters: the
first one is the frequency and the second one is the duration of the
tone in milliseconds.

void loop() {
 if (digitalRead(SW1) == pressed) {
 // Hz ms
 BuzzPiezo(5, 1000);
 BuzzPiezo(50, 1000);
 BuzzPiezo(500, 1000);
 }
}

Like before in the function, we have to know the period to generate
the frequency. As a reminder, period is 1 / frequency but in our case
is 1000 / frequency since we are working in milliseconds. Unlike last
time we need the tone to happen for a certain amount of time. This
means we have to know how many periods make up the desired
time.

For example, If the frequency passed is 50Hz, and the time passed is
1000:

1000ms / 50Hz = 20ms (<- Period)

So how many 20ms cycles are there in 1000ms?

1000ms / 20ms = 50 cycles (<- How many times the period should happen)

So, we know that the period is 20ms and that period needs to happen
50 times. This sounds like the perfect opportunity for a for-loop!

 for (long i = 0; i < cycles; i++) {
 digitalWrite(piezoPin, HIGH);
 delay(period / 2);
 digitalWrite(piezoPin, LOW);
 delay(period / 2);
 }

We are basically saying play a 50Hz tone 50 times.

57
145

Project 4.04 There is a Library for that

In this project we will learn about the benefits of using a library to
save development time and frustration.

Project Code:

///
// 4.04 - Using The Piezo

byte piezoPin = 12;

byte SW1 = 1;
bool pressed = LOW;

void setup() {
 pinMode(piezoPin, OUTPUT);
 pinMode(SW1, INPUT);

}

void loop() {
 if (digitalRead(SW1) == pressed) {
 tone(piezoPin, 500, 100);
 }
}

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

What is a library? A library is a set of pre-made functions written by
yourself or other people. Adding them into your program will provide
additional functionality and cut down on development time
significantly. They make programming much more manageable!

The library we use in the example is the “tone” library. This library is
automatically included in Arduino, so you don’t have to include any
headers. We’ll talk about what headers are later.

All we have to do to use it is call the tone function. See the table
below for parameters:

Function Name Parameter 1 Parameter 2 Parameter 3

tone Pin number
that the piezo
is connected
to

Desired
frequency

Tone duration

58 Learn Arduino Programming

This is almost exactly the function we made over the course of the
last few sketches! By using this built-in library, we could have saved a
lot of time and complications! This is the value of using libraries.
Unless you need to, try not to re-invent the wheel. Search for a
library for the part you are using. Many times, having a library or not
is a huge factor in picking components.

59
145

Lesson 5: Using Neopixels

Neopixels are digital RGB (Red, Green, Blue) LED pixels that are
individually addressable. The Neopixels are the eyes of the MC
Trainer.

Project 5.00 Using the Neopixels

In this project, we’ll turn the Neopixels purple. We are going to use a
library for this project. Most libraries are not built-in to Arduino. To
add this library, go to tools -> Manage Libraries and type in “Adafruit
Neopixel”. The library you’re looking for looks like this:

Next, click “Install”.

60 Learn Arduino Programming

Project Code:

//
// 5.00 - Using The NeoPixel

#include <Adafruit_NeoPixel.h>

byte dataPin = 10;
byte numberOfPixels = 2;
byte brightness = 10;

byte redValue = 255;
byte greenValue = 0;
byte blueValue = 127;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {
 pixels.begin();
 pixels.setBrightness(brightness);

 pixels.setPixelColor(0, pixels.Color(redValue, greenValue, blueValue));
 pixels.setPixelColor(1, pixels.Color(redValue, greenValue, blueValue));

 pixels.show();
}

void loop() {
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

In order to use a library that is not built-in to Arduino, a library header
needs to be added. This tells the program to compile that library
along with the code you’ve written.

This does not need done for this sketch (unless you’re typing from
scratch), as it’s already been included. For reference, this can be
done by going to sketch -> include library -> Adafruit Neopixel. This
will add the following line to your program:

#include <Adafruit_NeoPixel.h>

Six byte variables are used in this program: dataPin represents the
pin that is connected to the first Neopixel, numberOfPixels represents
the number of Neopixels connected to the board, brightness
represents the max brightness of the Neopixels, redValue
greenValue blueValue respectively represent their portion of the
Neopixel light being emitted.

61
145

byte dataPin = 10
byte numberOfPixels = 2;
byte brightness = 10;

byte redValue = 255;
byte greenValue = 0;
byte blueValue = 127;

After the variable declarations, there is what’s called a constructor.
Constructors are used to set things up in many libraries, but not all.
It’s not important to understand constructors right now, but just know
they create an object that we can use with the library. This
constructor needs to know how many Neopixels are connected in a
row, what pin they are connected to, and what type of Neopixels they
are.

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);

For now you can think of “Adafruit_Neopixel” in the constructor as a
sort of variable type like int, float, char, etc... “pixels” is just a
common name to represent the object initialized by the constructor. It
could be any name, like a normal variable. In contrast to a normal
variable, objects are used with the “.” (dot) operator. This dot operator
allows you to access functions specific to that object.

In the setup() function, we first initialize the Neopixel strip and
set its brightness.

 pixels.begin();

 pixels.setBrightness(brightness);

Next, we load the color of the neopixels using setPixelColor and
Color. The setPixelColor function takes the pixel number, and a
color. This second color parameter is passed with the Color function.
This function allows us to pass an RGB value to the setPixelColor
function. The color values passed to Color are 8-bit values (0-255).

 pixels.setPixelColor(0, pixels.Color(redValue, greenValue, blueValue));

 pixels.setPixelColor(1, pixels.Color(redValue, greenValue, blueValue));

Lastly, we need to update the Neopixels. In order to do so, all we
need to do is call the show() function. This function needs to be
called anytime that the Neopixel needs updated. When you set the

62 Learn Arduino Programming

pixel’s color using setPixelColor that value is stored in program
memory but not actually displayed. To display the new color, we need
to call pixels.show(). If you only load the color but don’t call this
function, nothing will happen.

 pixels.show(); //<- You must call this every time the Neopixel color needs updated.

You might be wondering how you know what functions you can
access with your object. Usually there is a class reference that can
be found online that details the library and the accompanying
functions. This library class reference is located at:

https://adafruit.github.io/Adafruit_NeoPixel/html/class_adafruit___neo
_pixel.html

You can also find examples of any library that you’ve installed by
going to file -> examples and hovering over the library. This is a great
way to learn how to set up and use new libraries and devices.

P
ro

je
c
ts

 1

https://adafruit.github.io/Adafruit_NeoPixel/html/class_adafruit___neo_pixel.html
https://adafruit.github.io/Adafruit_NeoPixel/html/class_adafruit___neo_pixel.html

63
145

Project 5.01 Cycling Colors with a Button

The goal of this project is to change the color of the Neopixels every
time SW1 is pressed. The colors will cycle between red, green and
blue.

Project Code:

///
// 5.01 Cycling Colors With a Button

#include <Adafruit_NeoPixel.h>

byte dataPin = 10;
byte numberOfPixels = 2;
byte brightness = 10;
byte LEDSetting = 0;

byte SW1 = 1;
byte buttonState = 0;
bool pressed = 0;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {
 pinMode(SW1, INPUT);

 pixels.begin();
 pixels.setBrightness(brightness);
 pixels.show();
}

void loop() {
 buttonState = digitalRead(SW1);

 if (buttonState == pressed) {
 LEDSetting++;

 if (LEDSetting > 2) {
 LEDSetting = 0;
 }

 if (LEDSetting == 0) {
 pixels.setPixelColor(0, pixels.Color(255, 0, 0));
 pixels.setPixelColor(1, pixels.Color(255, 0, 0));
 }
 else if (LEDSetting == 1) {
 pixels.setPixelColor(0, pixels.Color(0, 255, 0));
 pixels.setPixelColor(1, pixels.Color(0, 255, 0));

 }
 else {

64 Learn Arduino Programming

 pixels.setPixelColor(0, pixels.Color(0, 0, 255));
 pixels.setPixelColor(1, pixels.Color(0, 0, 255));

 }
 pixels.show();

 delay(250);
 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

In the loop() function, the first thing we do is check to see if a SW1 is
being pressed.

buttonState = digitalRead(SW1);

if (buttonState == pressed) {

In this example a variable called LEDSetting is used to keep track of
which color should be displayed. Every time the button is pressed,
this variable is incremented by 1.

 LEDSetting++;

After incrementing that variable, it needs to be checked to see if it is
out of the settings range (0 - 2). If it is, it is reset to 0.

 if (LEDSetting > 2) {
 LEDSetting = 0;

}

Next, the appropriate colors are loaded into the Neopixels based on
the LEDSetting variable according to the table below:

LEDSetting Value Neopixel Color

0 Red

1 Green

2 Blue

 if (LEDSetting == 0) {
 pixels.setPixelColor(0, pixels.Color(255, 0, 0));
 pixels.setPixelColor(1, pixels.Color(255, 0, 0));
 }
 else if (LEDSetting == 1) {
 pixels.setPixelColor(0, pixels.Color(0, 255, 0));

65
145

 pixels.setPixelColor(1, pixels.Color(0, 255, 0));

 }
 else {
 pixels.setPixelColor(0, pixels.Color(0, 0, 255));
 pixels.setPixelColor(1, pixels.Color(0, 0, 255));

 }

To display the new color we have to update the Neopixels using the
show() function.

pixels.show();

Lastly, a crude debounce is used to prevent more than one press
being read at a time.

 delay(250);
 }
}
///

66 Learn Arduino Programming

Project 5.02 Using ColorHSV

There are multiple ways to set the color of the Neopixels. Until now
we have used the Color function to set the RGB color of the
Neopixel. We can also use the function ColorHSV to set the color a
different way. HSV stands for Hue, Saturation, and Value. Hue refers
to the color of the Neopixel, Saturation refers to how white the
Neopixel is, and Value refers to how bright the Neopixel is. Hue in
this case is a 16-bit value (0 - 65535), while Saturation and Value are
8-bit values (0 - 255). Which color method you use is totally up to you
and mostly comes down to preference and application.

Note: Using ColorHSV does make it easier to loop through the entire
color spectrum.

Project Code:

//
// 5.02 - Using ColorHSV

#include <Adafruit_NeoPixel.h>

byte saturation = 255;
byte value = 255;

byte dataPin = 10;
byte numberOfLEDs = 2;
byte brightness = 10;

Adafruit_NeoPixel pixels(numberOfLEDs, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {
 Serial.begin(9600);
 pixels.begin();
 pixels.setBrightness(brightness);
}

void loop() {
 for (long hue = 0; hue < 65536; hue++) {
 pixels.setPixelColor(0, pixels.ColorHSV(hue, saturation, value));
 pixels.setPixelColor(1, pixels.ColorHSV(hue, saturation, value));
 pixels.show();
 delayMicroseconds(3);
 }

}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

67
145

Two variables are used to set the saturation and value parameters.
These values are not changed throughout the course of the program.
Feel free to change these values and see how it effects the program!

byte saturation = 255;
byte value = 255;

In the loop section of the program, all possible hue values are looped
through and displayed. Remember, hue is represented by a 16-bit
value (0 - 65535).

void loop() {
 for (long hue = 0; hue < 65536; hue++) {
 pixels.setPixelColor(0, pixels.ColorHSV(hue, saturation, value));
 pixels.setPixelColor(1, pixels.ColorHSV(hue, saturation, value));

Every time the hue value is changed, the Neopixels are updated to
provide a smooth transition between colors.

 pixels.show();

A small delay is incorporated to slow down the color cycling. This
delay function uses microseconds to delay instead of milliseconds. 1
second is 1000 milliseconds and 1 millisecond is 1000 microseconds.
That means that we are delaying 3 millionths of a second here! We
use microseconds becuase we want the color to transition smoothly.
There are 65,536 colors being displayed in the for-loop. Using the
regular delay function between each one would make it look choppy
and make the full color cycle take too long. Change the
delayMicroseconds to delay and see what happens!

 delayMicroseconds(3);
 }

}
//

68 Learn Arduino Programming

Project 5.03 Individually addressing Neopixels using
buttons

The goal of this project is to control the left Neopixel with SW1 and
the right Neopixel with SW2. The left Neopixel will turn on when SW1
Is pressed, and the right Neopixel will turn on when SW2 is pressed.
They will turn off when their respective buttons are not pressed.

Project Code:

//
// 5.03 – Individually addressing Neopixels using buttons

#include <Adafruit_NeoPixel.h>

byte dataPin = 10;
byte numberOfPixels = 2;

byte SW1 = 1;
byte SW2 = 0;

bool pressed = LOW;

byte saturation = 255;
long neoPixelOneColor = 0;
long neoPixelTwoColor = 45000;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {
 pixels.begin();

 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);
}

void loop() {

 if (digitalRead(SW1) == pressed) {
 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation, 255));
 }
 else {
 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation, 0));
 }

 if (digitalRead(SW2) == pressed) {
 pixels.setPixelColor(1, pixels.ColorHSV(neoPixelTwoColor, saturation, 255));

 }
 else {
 pixels.setPixelColor(1, pixels.ColorHSV(neoPixelTwoColor, saturation, 0));

69
145

 }

 pixels.show(); // Show the Neopixel's color

}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Like previous sketches, we want to make a decision based on if the
buttons are pressed or not. In order to do so, we need to use if-
statements.

 if (digitalRead(SW1) == pressed) {

Next, we need to add the code that turns on the Left Neopixel if SW1
is pressed.

 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation, 255));

Let’s break this function down again. In the setPixelColor function
there are two parameters. The first is the address of the Neopixel
you’d like to target.

Neopixels are all chained together in one big line. Like most things in
programming the line count starts at 0. The Neopixel on the left is first
in line so it’s Neopixel number 0. The Neopixel on the right is the
second in line so it’s Neopixel number 1.

So, in this case since we have passed a 0 as our first parameter in
the setPixelColor function, we are addressing the Neopixel on the
left.

 pixels.setPixelColor(0

The second parameter of setPixelColor is the pixel’s color. In this
case we use the ColorHSV function to set that.

The third parameter of the ColorHSV function is the most important
here. Remember, It’s the value of the color (brightness). If we set this
to 255, the color is full brightness and if we set it to 0, the Neopixel is
off. So, when SW1 is pressed we want to set the Neopixel to full
brightness:

 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation, 255));

70 Learn Arduino Programming

}

And when the SW1 is not pressed we want to turn the Neopixel off:

 else {
 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation, 0));
 }

The same process is repeated for the Neopixel on the right, but you’ll
notice that Neopixel number 1 is addressed instead:

 if (digitalRead(SW2) == pressed) {
 pixels.setPixelColor(1, pixels.ColorHSV(neoPixelTwoColor, saturation, 255));

 }
 else {
 pixels.setPixelColor(1, pixels.ColorHSV(neoPixelTwoColor, saturation, 0));
 }

Then to display these colors all we need to do is call the show()
function:

 pixels.show(); // Show the Neopixel's color

}
//

And the loop repeats.

To change the color that is being displayed, change the
neoPixelOneColor and neoPixelTwoColor variables. This website will
give you the HSV and RGB color codes for a desired color:

https://www.rapidtables.com/web/color/color-picker.html

https://www.rapidtables.com/web/color/color-picker.html

71
145

Project 5.04 Fading Neopixels Using Buttons

This project is a bit more complicated than the last. In this project the
goal is to slowly fade a Neopixel on while a button is pressed but
instead of the Neopixel shutting off when the button is released, it
slowly fades off. Again, SW1 will control the left Neopixel, and SW2
will control the right Neopixel.

Project Code:

//
// 5.04 - Fading Neopixels Using Buttons

#include <Adafruit_NeoPixel.h>

byte dataPin = 10;
byte numberOfPixels = 2;
byte SW1 = 1;
byte SW2 = 0;

bool pressed = LOW;

byte saturation = 255;
long neoPixelOneColor = 0;
long neoPixelTwoColor = 45000;
byte neoPixelOneBrightness = 0;
byte neoPixelTwoBrightness = 0;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {

 pixels.begin();

 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);
}

void loop() {
 if (digitalRead(SW1) == pressed) {
 if (neoPixelOneBrightness < 255) {
 neoPixelOneBrightness = neoPixelOneBrightness + 1;

 }
 }
 else {
 if (neoPixelOneBrightness > 0) {
 neoPixelOneBrightness = neoPixelOneBrightness - 1;
 }
 }

 if (digitalRead(SW2) == pressed) {

72 Learn Arduino Programming

 if (neoPixelTwoBrightness < 255) {
 neoPixelTwoBrightness = neoPixelTwoBrightness + 1;
 }
 }
 else {
 if (neoPixelTwoBrightness > 0) {
 neoPixelTwoBrightness = neoPixelTwoBrightness - 1;
 }
 }

 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation,
neoPixelOneBrightness));
 pixels.setPixelColor(1, pixels.ColorHSV(neoPixelTwoColor, saturation,
neoPixelTwoBrightness));

 pixels.show();

 delay(10);
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

This sketch introduces two new byte type variables from the last.
These two variables are used to keep track of the individual
brightness of each Neopixel:

byte neoPixelOneBrightness = 0;
byte neoPixelTwoBrightness = 0;

Moving on to the loop(), we once again need to make a decision. Is
the button pressed? For this we will use an if-statement:

 if (digitalRead(SW1) == pressed) {

We can make increasingly complex decisions with an if-statement
inside another if-statement. In this example we set the color using
ColorHSV. This makes it very easy for us to set the brightness of an
individual pixel. Remember that the last parameter for ColorHSV is
the “Value” of the Neopixel (brightness). It is important to note that
this function takes 8-bit number for value, so it’s numbers between 0-
255. If we pass a value over 255 unexpected things can happen. For
that reason, we have to check and see if the brightness value for this
pixel is less than 255 before we increase the brightness any.

 if (neoPixelOneBrightness < 255) {

73
145

If the button is pressed, we need to increase the brightness of the
Neopixel associated with that button (if it is below 255). In this
example we increase the brightness variable by one every time that
the loop() runs and the button is found to be pressed.

 neoPixelOneBrightness = neoPixelOneBrightness + 1;

If the associated button is not pressed, the else part of the if-
statement executes. Along with not being able to pass numbers
above 255 for the value parameter of ColorHSV we cannot pass
numbers below 0 for the value parameter. It doesn’t make sense to
have a brightness below 0. For that reason, we have to check and
see that the associated brightness variable is greater than 0 before
subtracting 1:

 if (neoPixelOneBrightness > 0) {

If it is above 0 we can subtract 1 from it:

 neoPixelOneBrightness = neoPixelOneBrightness - 1;

The exact same thing happens with the other button and Neopixel:

 if (digitalRead(SW2) == pressed) {
 if (neoPixelTwoBrightness < 255) {
 neoPixelTwoBrightness = neoPixelTwoBrightness + 1;
 }
 }
 else {
 if (neoPixelTwoBrightness > 0) {
 neoPixelTwoBrightness = neoPixelTwoBrightness - 1;
 }
 }

Next, we need to update the Neopixels with their associated
brightness values. Remember that the first Neopixel is number 0 and
the second Neopixel is number 1. All we have to do is address the
Neopixels and pass the new brightness values to ColorHSV.

 pixels.setPixelColor(0, pixels.ColorHSV(neoPixelOneColor, saturation,
neoPixelOneBrightness));

 pixels.setPixelColor(1, pixels.ColorHSV(neoPixelTwoColor, saturation,
neoPixelTwoBrightness));

After we update the Neopixels we have to show the new brightness:

74 Learn Arduino Programming

 pixels.show();

Lastly, there is a delay added so that we can see the incremental
changes. Try deleting this delay and see what happens!

 delay(10);
}
//

Let’s do a brief recap.

First, we checked to see if a button was pressed. If the button was
pressed, we checked to see if the brightness associated with the
Neopixel was below 255. If it was, we increased its brightness by 1.

If the button was not pressed, we checked to see if the brightness of
the associated Neopixel was greater than 0. If it was, we decreased
its brightness by 1.

Next, we updated the Neopixels with the correct brightness variables.
Then showed the Neopixel updates and added a small delay.

75
145

Lesson 6: Using the Potentiometer

A potentiometer, often referred to as a "pot," is a type of variable
resistor. They are commonly used for controlling electrical devices
such as volume controls on audio equipment or as control inputs in
many types of electronic circuits. It's a three-terminal device that
operates as an adjustable voltage divider.

Project 6.00 Using the Potentiometer

This project introduces the potentiometer and shows how to use it. A
potentiometer is a special type of resistor that allows us to change its
resistance value. This feature makes potentiometers very useful for
tasks like adjusting the volume on speakers or controlling the
brightness of lights, where we need to vary resistance to control an
electrical current.

Project Code:

///
// 6.00 - Using The Potentiometer

byte potPin = A0;

void setup() {
 Serial.begin(9600);
 pinMode(potPin, INPUT);
}

void loop() {
 int potValue = analogRead(potPin);

 Serial.print("The pot value is at: "); Serial.println(potValue);
 delay(100);

76 Learn Arduino Programming

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

First, we declare the pin that the potentiometer is connected to as
potPin. This variable declaration is different from those you’ve seen
so far because it starts with an “A”. This “A” means that the pin we
are connecting to is an analog pin. Analog pin refers to a pin that can
read analog values. A digital value would be a 1 or a 0 (5v or 0v), but
an analog value can be anything in between. Not all pins can be used
as analog pins on the MC Trainer.

byte potPin = A0;

In the setup you’ll notice that the pin is still an INPUT pin. This is
because we are using the pin to read a value. It does not matter if it is
digital or analog, it is still an input.

 pinMode(potPin, INPUT);

You can read the analog voltage at an analog pin by using the
analogRead function. analogRead returns a 10-bit value (0 – 1023)
that represents the voltage at that pin. 5v would be 1023, ~2.5v
would be 512, and 0v would be 0.

int potValue = analogRead(potPin);

After that we print the value read out into the Serial port and delay
100 milliseconds. Make sure and open the Serial port to see the data
being printed.

Serial.print("The pot value is at: "); Serial.println(potValue);
delay(100);

Try rotating the knob of the potentiometer to see the range of values
produced!

77
145

Project 6.01 Changing Color with the Potentiometer

This project will demonstrate the use of a potentiometer to control the
color of the Neopixels. As the potentiometer rotates, the color of the
Neopixels will change.

Project Code:

///
// 6.01 - Changing Color with Potentiometer

#include <Adafruit_NeoPixel.h>

byte value = 255;
byte saturation = 255;

byte dataPin = 10;
byte numberOfPixels = 2;
byte brightness = 10;

byte potPin = A0;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {
 Serial.begin(9600);

 pinMode(potPin, INPUT);

 pixels.begin();
 pixels.setBrightness(brightness);
}

void loop() {

 int potValue = analogRead(potPin);
 long colorValue = map(potValue, 0, 1023, 0, 65535);

 pixels.setPixelColor(0, pixels.ColorHSV(colorValue, saturation, value));
 pixels.setPixelColor(1, pixels.ColorHSV(colorValue, saturation, value));
 pixels.show();

}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

After declaring variables, in the setup() function Serial is initialized,
the pinMode of the potPin is set, the Neopixels are initialized and
their brightness is set.

void setup() {

78 Learn Arduino Programming

 Serial.begin(9600);

 pinMode(potPin, INPUT);

 pixels.begin();
 pixels.setBrightness(brightness);
}

In the loop() function, an int variable called potValue is created to
hold the analog value read from the pot.

int potValue = analogRead(potPin);

At this point we have a problem. We have a potentiometer value
somewhere between 0 and 1023 (10-bit) but our color range goes
from 0 – 65535 (16-bit). This is where the map function comes in.
The map function allows us to map two value ranges together
linearly. This is much less scary than it sounds. Essentially, it will
make 0 on the potentiometer equal 0 on the color range, and 1023 on
the potentiometer equal 65535 on the color range. For example, if the
potentiometer value read was 543 the map function would return a
value of 34785.

We can check this by using the equation:

1.) (potValue * MaxHueValue) / MaxPotValue = MappedValue
2.) (543 * 65535)/1023 = 34,785

The map function takes five parameters. It takes the value to map,
the min value of that range, the max value of that range, the min
value of the range to be mapped to, and the max value of the range
to be mapped to. See the table below:

Parameters Value

Value to map analogValue read from pot

Min value of that range 0

Max value of that range 1023

Max value of the range to be mapped to 0

Min value of the range to be mapped to 65535

 long colorValue = map(potValue, 0, 1023, 0, 65535);

Lastly, the value that was mapped is written to the Neopixels and
shown.

79
145

 pixels.setPixelColor(0, pixels.ColorHSV(colorValue, saturation, value));
 pixels.setPixelColor(1, pixels.ColorHSV(colorValue, saturation, value));
 pixels.show();

80 Learn Arduino Programming

Lesson 7: Using the OLED

OLED stands for organic light emitting diode. This small screen
allows for real-time feedback and interaction with projects.

Project 7.00 Using the OLED

The OLED is like a mini-TV screen. In fact, many TVs now-a-days
are OLEDs. In this project you’ll learn how to setup and use the
OLED properly.

Project Code:

//
// 7.00 - Using The OLED

#include <Adafruit_SSD1306.h>
#include <splash.h>

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);
void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.clearDisplay();
 display.display();

 display.setCursor(0, 0);
 display.setTextSize(1);
 display.setTextColor(SSD1306_WHITE);

81
145

 display.println("Hello World!");
 display.display();
}

void loop() {
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Before we do anything, we need to install the OLED Library. You can
do this by going to Tools -> Manage Libraries, and type in
“Adafruit_SSD1306”. It looks like this:

Click install. If it asks you to install dependencies go ahead and do
so.

For reference, you can include it into a project by going to Sketch ->
Include Library and click “Adafruit_SSD1306”. This does not need to
be done in this sketch as it is already included.

The library reference where you can find all of the functions avaliable
can be found here:

https://adafruit.github.io/Adafruit_SSD1306/html/class_adafruit___s_s
_d1306.html

The first thing that we need to do is tell the define the length and
width of our OLED in pixels.

byte screenWidth = 128;
byte screenHeight = 64;

Next, we have to define the I2C address or our OLED. I2C is a
communication protocol that uses unique device addresses to
communicate data. You do not need to understand anything about
I2C other than the address for the OLED is 0x3C.

byte screenAddress = 0x3C;

https://adafruit.github.io/Adafruit_SSD1306/html/class_adafruit___s_s_d1306.html
https://adafruit.github.io/Adafruit_SSD1306/html/class_adafruit___s_s_d1306.html

82 Learn Arduino Programming

What does 0x3C mean? Well, that number starts with “0x” because it
is in hexadecimal. Hexadecimal is a base 16 numbering system that
uses letters to represent numbers 10 – 15. These are letters A – F.
Our day-to-day numbers are base 10 and are referred to as decimal
numbers. 0x3C is 60 in decimal. You could write the address as 60
but I2C addresses are generally done in hex.

byte screenAddress = 0x3C;

Next is the constructor for the class. The constructor contains a
name, the screen’s width, the screen’s height, and a reference to the
Wire object. That last one is sort of complicated, so we won’t worry
about it. Just know that you need the “&Wire” as the last parameter.
To break that down into a table:

Symbol What it is

display This is the name of the class we
are creating. This is just like the
“pixels” in the Neopixel projects.

screenWidth This is the screen’s width in
pixels (128)

screenHeight This is the screen’s height in
pixels (64)

&Wire This is a reference to the Wire
class. Don’t worry about
understanding this right now.

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);

A few things need to be done in the setup() function. First, we have
to initialize the OLED with the begin function. The
“SSD1306_SWITCHCAPVCC” that is passed is just telling the OLED
to create its own IO voltage. It’s basically creating a higher voltage
than the MC Trainer can supply to support itself. We also have to
pass the I2C address to it.

 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);

Next, the screen is cleared with the clearDisplay function.

 display.clearDisplay();

Once loaded with data, the OLED needs to be told to display it with
the display function. This works exactly the same as the show

83
145

function with the Neopixels. In this case we’ve loaded the clear
screen data.

 display.display();

Now we set the cursor to coordinates (0,0). This (0,0) is different from
a normal graph. The (0,0) for the OLED starts in the top left corner.

 display.setCursor(0, 0);

Next, we will set the size of the text to be displayed.

 display.setTextSize(1);

Lastly for setup we have to tell the OLED what color the text is with
the setTextColor function. This OLED can only display white.

 display.setTextColor(SSD1306_WHITE);

We are now ready to print some text! This works exactly the same as
the Serial functions.

 display.println("Hello World!");

Once the data is loaded, we have to display it with the display
function.

 display.display();

There is nothing in the loop() function in this project.

void loop() {
}

84 Learn Arduino Programming

Project 7.01 Writing Text to the Screen

In this project you’ll learn how to write text to the OLED, change its
size, and about printing variables.

Project Code:

//
// 7.01 - Writing Text to The Screen

#include <Adafruit_SSD1306.h>
#include <splash.h>

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;
byte numberToPrint = 123;

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);

void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.setTextColor(SSD1306_WHITE);
}

void loop() {
 display.clearDisplay();
 display.setCursor(0,0);

 display.setTextSize(3);

 display.println("Hello!");
 display.print(numberToPrint);
 display.display();
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

First, we have to include the correct libraries, declare our standard
variables, and include the constructor.

#include <Adafruit_SSD1306.h>
#include <splash.h>

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;
byte numberToPrint = 123;

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);

85
145

In the setup() function, we need to set the OLED up. The only two
things that you absolutely need to do are use the begin and
setTextColor functions.

void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.setTextColor(SSD1306_WHITE);
}

In the loop() function, the first thing we want to do is clear any text
that is currently on the screen and reset the cursor to (0,0).

void loop() {
 display.clearDisplay();
 display.setCursor(0,0);

Next, we need to set the text size that we would like. Good options
are 1-3, but you can go bigger.

 display.setTextSize(3);

Then we can print some text! First, we print “Hello!” and then we print
a variable. You can use the print and println functions to print all of
the same things that you can print using the Serial functions.

 display.println("Hello!");
 display.print(numberToPrint);
 display.display();
}
//

86 Learn Arduino Programming

Project 7.02 Reaction Game Using OLED

In this project we will make a reaction time game! The game will be
able to keep track of the current record in milliseconds and will even
be able to tell if the user cheated!

Project Code:

//
// 7.02 - Reaction Game Using The OLED

#include <Adafruit_SSD1306.h>
#include <splash.h>

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;

byte LED1 = 13;

bool pressed = LOW;
byte SW1 = 1;
byte SW2 = 0;

int timesPlayed = 0;
long record = 0;

bool cheated = false;

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);

void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.setTextColor(SSD1306_WHITE);
 display.setTextSize(2);

 pinMode(LED1, OUTPUT);

 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);
}

void loop() {
 cheated = false;

 while (digitalRead(SW1) != pressed) {
 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("Press SW1");
 display.println("To Play!");

 if (timesPlayed != 0) {

87
145

 display.println("Record: ");
 display.print(record);
 display.println(" ms");
 }
 display.display();
 }

 digitalWrite(LED1, HIGH);
 int waitTime = random(1000, 4001);
 long startWaitTime = millis();

 while (waitTime + startWaitTime > millis()) {
 if (digitalRead(SW2) == pressed) {
 cheated = true;
 break;
 }
 }

 digitalWrite(LED1, LOW);

 if (cheated != true) {
 long startTime = millis();

 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("Press the ");
 display.println("button!");
 display.display();

 while (digitalRead(SW2) != pressed) {
 ;
 }

 long endTime = millis();
 long totalTime = endTime - startTime;

 if (timesPlayed == 0) {
 record = totalTime;
 }
 else if (totalTime < record) {
 record = totalTime;
 }

 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("You took");
 display.print(totalTime);
 display.println(" ms");
 display.println("to react!");
 display.display();

 timesPlayed++;

 }

88 Learn Arduino Programming

 else {
 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("You");
 display.println("cheated!");
 display.setTextSize(4);
 display.println(":(");
 display.setTextSize(2);
 display.display();
 }

 delay(3000);
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

This program is a bit longer than the others, but don’t worry it’ll all be
broken down.

Let’s define our game:

Our game will test reaction time by turning on an LED for a random
amount of time, having the player press a button when that LED turns
off, timing how long after the LED turned off that the player pressed
the button, and displaying that on a screen. It would also be nice if we
could keep track of the best reaction time.

As a bonus project, see if you can get the Piezo to Buzz when the
user cheats!

Let’s break that down a little more:

• Use LED1 as the reaction LED

• Turn LED1 on for a random time between 1 and 4 seconds

• Use the left button to start the game

• Use the right button to react to the LED turning off

• Keep track of the time from when the LED turns off to when
the button is pressed

• Display that time on the screen

• Keep track of the best reaction time

Now that we have defined the game, we can program it. First things
first, we need to include the proper libraries to use the OLED.

#include <Adafruit_SSD1306.h>

89
145

#include <splash.h>

Next, we define the height, width, and address of the OLED.

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;

Then we need to declare some additional variables in our code to
define things like the LED that will be used as the reaction indicator,
the buttons that will be used, and some general variables that will be
used to play the game.

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;

byte LED1 = 13;

bool pressed = LOW;
byte SW1 = 1;
byte SW2 = 0;

These three variables will be used to record the number of times the
game has been played, the record and if the player has cheated.

int timesPlayed = 0;
long record = 0;

bool cheated = false;

Here we just include the constructor for the OLED.

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);

In the setup() function we need to setup our pinModes and OLED.
The buttons will be INPUTs and the LED will be an OUTPUT.

void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.setTextColor(SSD1306_WHITE);
 display.setTextSize(2);

 pinMode(LED1, OUTPUT);

 pinMode(SW1, INPUT);
 pinMode(SW2, INPUT);
}

90 Learn Arduino Programming

Next in the loop() function, we first need to reset the cheated variable
before we play the game.

 cheated = false;

Then we need to wait until the user presses the play button. We can
wait by using a while-loop.

 while (digitalRead(SW1) != pressed) {

While the program waits for the user to press the button it can print
the “Menu” screen. The menu screen prompts the player to play by
pressing SW1.

 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("Press SW1");
 display.println("To Play!");

This screen is also where the record will be printed. There is no point
in printing a record on this screen if the game has not been played,
because there is no record. So, by using the timesPlayed variable we
can check if the game has been played. If so, print the record.

 if (timesPlayed != 0) {
 display.println("Record: ");
 display.print(record);
 display.println(" ms");
 }

Now that we have loaded the data into the OLED, we need to display
it.

 display.display();
 }

Once the button has been pressed the program moves on from the
while-loop.

At this point we know the player is ready to play the game so turn the
LED on.

 digitalWrite(LED1, HIGH);

Next, we need to get a random time between 1 and 4 seconds to
keep the LED on for. This can be done with the random function. It

91
145

will return a random value between the first number passed and the
second number passed minus 1.

 int waitTime = random(1000, 4001);

If we are going to wait for some time from now, then we need to know
what time it is now. We can get that by using the millis() function.

 long startWaitTime = millis();

To wait we need to keep checking the time to see if it’s waitTime past
the startWaitTime. For example, if the startWaitTime was 1567
milliseconds and the waitTime was 3000 we need to wait until millis()
returns 4567 to move on. startWaitTime + waitTime needs to be less
than what millis() returns.

 while (waitTime + startWaitTime > millis()) {

While we are waiting for the time to elapse the LED is still on. If the
player presses the button while the LED is on that is considered
cheating. So, if the player presses the button while we are in this
while-loop then they are cheating. We can tell if they press the
button by monitoring it. In the loop we can put an if statement to
check and see if the button is being pressed.

 if (digitalRead(SW2) == pressed) {

If the button is being pressed, we set the cheated variable to true.

cheated = true;

Then we use the keyword “break” to leave the while-loop. break can
be used to break out of loops completely. There is no need to stay in
the loop waiting if the player cheated, so we can move on.

 break;
 }
 }

Next, we can turn the LED off. At this point, the player has either
cheated of the time has properly elapsed.

 digitalWrite(LED1, LOW);

After the LED is off, if the player did not cheat, we need to record the

92 Learn Arduino Programming

time that the LED turned off at.

 if (cheated != true) {
 long startTime = millis();

Then we need to prompt the user to press the button (because the
LED is off).

 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("Press the ");
 display.println("button!");
 display.display();

We then need to wait for the player to press SW2 which indicates a
reaction.

 while (digitalRead(SW2) != pressed) {
 ;
 }

Once the player has pressed the button the while-loop breaks. We
need to record that time with millis().

 long endTime = millis();

To find out the total time it took from the LED turning off to when the
player pressed the button, we have to subtract the time when the
LED turned off from the time the player pressed the button.

 long totalTime = endTime - startTime;

Then we check to see if this is the first time the player has played.

 if (timesPlayed == 0) {

If it is the first time, we set the record equal to the totalTime.

 record = totalTime;
 }

If it is not the first time, then we check to see if the totalTime is less
than the current record.

 else if (totalTime < record) {

If it is, then that’s the new record time.

93
145

 record = totalTime;
 }

We can then display the time the player took to react on the OLED.

 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("You took");
 display.print(totalTime);
 display.println(" ms");
 display.println("to react!");
 display.display();

Then we need to increment the timesPlayed variable to indicate that
it is not the first time playing the game later.

 timesPlayed++;

If the player cheated, we need to display that on the OLED.

 else {
 display.clearDisplay();
 display.setCursor(0, 0);
 display.println("You");
 display.println("cheated!");
 display.setTextSize(4);
 display.println(":(");
 display.setTextSize(2);
 display.display();
 }

After either case (cheated or not), we need to delay for three
seconds to let the player see their time or see that they cheated.

 delay(3000);

94 Learn Arduino Programming

Project 7.03 Drawing Shapes with the OLED

We can do more than just text on the OLED. In this project you’ll
learn how to draw shapes too!

Project Code:

//
// 7.03 Drawing Shapes with the OLED

#include <Adafruit_SSD1306.h>

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);
void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.setTextColor(SSD1306_WHITE);
}

void loop() {
 display.clearDisplay();
 display.drawPixel(63, 32, WHITE);
 display.display();
 delay(1000);

 display.clearDisplay();
 display.drawLine(0, 0, 63, 63, WHITE);
 display.display();
 delay(1000);

 display.clearDisplay();
 display.drawCircle(63, 31, 12, WHITE);
 display.display();
 delay(1000);

 display.clearDisplay();
 display.fillCircle(63, 32, 12, WHITE);
 display.display();
 delay(1000);

 display.clearDisplay();
 display.drawTriangle(63, 0, 96, 63, 32, 63, WHITE);
 display.display();
 delay(1000);

 display.clearDisplay();
 display.fillTriangle(63, 0, 96, 63, 32, 63, WHITE);
 display.display();
 delay(1000);

95
145

 display.clearDisplay();
 display.drawRect(10, 10, 107, 43, WHITE);
 display.display();
 delay(1000);

 display.clearDisplay();
 display.fillRect(10, 10, 107, 43, WHITE);
 display.display();
 delay(1000);

}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

First, we include the library needed for the OLED.

#include <Adafruit_SSD1306.h>

Then we make some standard variables for the OLED to define
screen width, height, and the I2C address.

byte screenWidth = 128;
byte screenHeight = 64;
byte screenAddress = 0x3C;

After that we use the constructor to make our display object.

Adafruit_SSD1306 display(screenWidth, screenHeight, &Wire);

Now we can set the OLED up in the setup() function.

void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, screenAddress);
 display.setTextColor(SSD1306_WHITE);
}

Next, we can use specific functions to draw different shapes on the
OLED! Don’t forget that (0,0) for the OLED is actually in the top left of
the screen.

The first shape we will explore is actually just a point. We can draw
points on the OLED with the function drawPixel. The first parameter
is the X position, the second parameter is the Y position, and the last
parameter is the color. All of these functions last parameter will be
“WHITE” since this OLED can only display white.

96 Learn Arduino Programming

void loop() {
 display.clearDisplay();
 display.drawPixel(63, 32, WHITE);
 display.display();
 delay(1000);

The next shape is a line. We can use the drawLine function. These
parameters are the starting x position, starting y position, ending x
position, ending y position, and the color.

 display.clearDisplay();
 display.drawLine(0, 0, 63, 63, WHITE);
 display.display();
 delay(1000);

The next shape is a circle. We can use the drawCircle function.
These parameters are the x position, y position, circle radius, and
color.

 display.clearDisplay();
 display.drawCircle(63, 31, 12, WHITE);
 display.display();
 delay(1000);

The next shape is also a circle. We can use the fillCircle function to
draw a circle that is filled in. These parameters are the x position, y
position, circle radius, and color.

 display.clearDisplay();
 display.fillCircle(63, 32, 12, WHITE);
 display.display();
 delay(1000);

The next shape is a triangle. We can use the drawTriangle function.
This function takes a set of three points and draws lines connecting
them. The parameters are x0, y0, x1, y1, x2, y2, and color.

 display.clearDisplay();
 display.drawTriangle(63, 0, 96, 63, 32, 63, WHITE);
 display.display();
 delay(1000);

The next shape is also a triangle. We can use the fillTriangle
function. This function takes a set of three points, draws lines
connecting them and fills in that area. The parameters are x0, y0, x1,
y1, x2, y2, and color.

 display.clearDisplay();

97
145

 display.fillTriangle(63, 0, 96, 63, 32, 63, WHITE);
 display.display();
 delay(1000);

The next shape is a rectangle. We can use the drawRect function to
draw a rectangle. This function takes the top left starting x position,
top left starting y position, width of the rectangle, height of the
rectangle and color.

 display.clearDisplay();
 display.drawRect(10, 10, 107, 43, WHITE);
 display.display();
 delay(1000);

The next shape is also a rectangle. We can use the fillRect function
to draw and fill in a rectangle. This function takes the top left starting
x position, top left starting y position, width of the rectangle, height of
the rectangle and color.

 display.clearDisplay();
 display.fillRect(10, 10, 107, 43, WHITE);
 display.display();
 delay(1000);

}
//

98 Learn Arduino Programming

Lesson 8: Using the Light Sensor

A Light Dependent Resistor (LDR), also known as a photoresistor, is
a type of resistor whose resistance varies with the amount of light
falling on it. In darkness, an LDR exhibits high resistance, and makes
it harder for electricity to pass through it. Conversely, when exposed
to light, the resistance drops dramatically, making it easier for
electricity to flow through it. These are often found in automatic night
lights, burglar alarms, streetlights, light intensity meter, and more.

Project 8.00 Light Sensor

In this project you’ll learn what an LDR is and how to analogRead it
to determine light intensity.

Project Code:

///
//8.00 - Reading Light Intensity

byte lightSensorPin = A2;

void setup() {
 pinMode(lightSensorPin, INPUT);
 Serial.begin(9600);
}

void loop() {
 Serial.print("The light level is at: "); Serial.println(analogRead(lightSensorPin));
 delay(1000);
}

///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Reading the LDR is exactly the same as reading the potentiometer.

99
145

The pin that is connected to the LDR is an analog pin.

byte lightSensorPin = A2;

The LDR is going to have an analog voltage, which is read using
analogRead. It is then printed out onto the Serial monitor. Make sure
and open the Serial port to see the data being printed.

 Serial.print("The light level is at: "); Serial.println(analogRead(lightSensorPin));

There is then a delay to keep the Serial port from being flooded with
messages.

 delay(1000);

The LDR will read more voltage the darker it is. We can use this
information to control outputs based on the light intensity.

100 Learn Arduino Programming

Project 8.01 Max and Min Brightness

In this project, we'll find out the real-world minimum and maximum
readings from our Light Dependent Resistor (LDR) in the room you’re
in. Unlike the potentiometer, in practice the LDR won't give us the full
range from 0 to 1023 that we can read with the analogRead function.

Why is that? Well, our LDR is set up in a circuit in series another
resistor, which has a resistance of 10,000 ohms. The readings we get
depend on the total resistance of this setup.

For us to get a reading of 0, the LDR would have to have no
resistance at all - that's 0 ohms, which isn't going to happen because
all objects have some resistance.

Similarly, for us to get the maximum reading of 1023, the LDR would
need to have an infinite amount of resistance. That's not possible
either.

So, the real-world readings we get will be somewhere in between,
and that's what we're going to find out!

Project Code:

///
// 8.01 Max and Min Brightness

byte lightSensorPin = A2;
int maxValue = 0;
int minValue = 0;

void setup() {
 pinMode(lightSensorPin, INPUT);

 Serial.begin(9600);

 maxValue = analogRead(lightSensorPin);
 minValue = analogRead(lightSensorPin);
}

void loop() {
 int currentBrightness = analogRead(lightSensorPin);

 if (currentBrightness > maxValue) {
 maxValue = currentBrightness;
 Serial.print("The new max brightness is: "); Serial.println(maxValue);
 }

101
145

 if (currentBrightness < minValue) {
 minValue = currentBrightness;
 Serial.print("The new min brightness is: "); Serial.println(minValue);
 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

We will need a variable to hold the min and max voltage values that
come across the LDR.

int maxValue = 0;
int minValue = 0;

In the setup() function, we have to load these variables we created
with analogRead values. The reason these variables need loaded
with real analogRead values is because we do not want to load them
initially with values more or less than their range will support.

What does that mean? For example, if the lowest in the range of 0 –
1023 that the LDR would read was 20, then if we loaded the
minValue with 0 and checked to see if any value went below it, it
would never happen.

If we instead load it with an analogRead then that is part of the range
by default, since it is a reading of the voltage across the LDR.

maxValue = analogRead(lightSensorPin);
minValue = analogRead(lightSensorPin);

In the loop() function, we first analogRead the current voltage value
of the LDR

int currentBrightness = analogRead(lightSensorPin);

After that, we then look to see if the value of the currentBrightness
variable is greater than the value of the maxValue variable. If so, we
have a new max value and the maxValue variable needs to be
reassigned with the value of currentBrightness. Then we print that
value for our records.

 if (currentBrightness > maxValue) {
 maxValue = currentBrightness;
 Serial.print("The new max brightness is: "); Serial.println(maxValue);

102 Learn Arduino Programming

 }

We then do the same thing but with the minValue variable. If
currentBrightness variable is less than the minValue variable, we
reassign it with its value and print it.

 if (currentBrightness < minValue) {
 minValue = currentBrightness;
 Serial.print("The new min brightness is: "); Serial.println(minValue);
 }

Make sure and write these values down for the next project. These
are the max and min brightness values for the room you’re in. Think
of this project as calibrating your MC Trainer to get the most out of it.

103
145

Project 8.02 Mapping Light

In this project we will use the Min and Max brightness values from the
last sketch to vary the brightness of an LED based on the light on the
LDR. The darker the room, the brighter LED1 will be.

Project Code:

//
// 8.02 Mapping Light

byte lightSensorPin = A2;
int maxValue = 909;
byte minValue = 23;

byte LED1 = 13;

void setup() {
 pinMode(lightSensorPin, INPUT);
 pinMode(LED1, OUTPUT);
 Serial.begin(9600);
}

void loop() {
 int currentValue = analogRead(lightSensorPin);

 int LED1Brightness = map(currentValue, minValue, maxValue, 0, 255);

 LED1Brightness = constrain(LED1Brightness, 0, 255);

 analogWrite(LED1, LED1Brightness);
}

//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

In my case, my maxValue is 909 and my minValue is 23. Yours will
probably be slightly different. You’ll need to update the variables
below for your specific values.

int maxValue = 909;
byte minValue = 23;

In the loop() function, we first have to analogRead the voltage on the
LDR. The analogRead function reads from 0 – 1023 (10-bit) but the
analogWrite function write values of 0 – 255 (8-bit). The map
function will take care of this issue. Remember, the map function
takes five parameters. It takes the value to map, the min value of that

104 Learn Arduino Programming

range, the max value of that range, the min value of the range to be
mapped to, and the max value of the range to be mapped to.

int LED1Brightness = map(currentValue, minValue, maxValue, 0, 255);

Sometimes the LDR will register values higher or lower than the
range we defined in our code. For this reason, we want to “Constrain”
our readings. This just keeps our readings from going above or below
the range we’ve defined.

To keep this from happening, what we need to do is use the
constrain function. The constrain function allows us to keep a
variable in between certain numbers. For example, if we were to get
a value of 300 and our constrain range is 0 – 255, the function would
return 255. The same is true for the lower range, but it returns the low
constrained value. If the value is instead within the range, it just
returns that value.

 LED1Brightness = constrain(LED1Brightness, 0, 255);

Lastly, the LED1Brightness analog value is written to LED1.

 analogWrite(LED1, LED1Brightness);

105
145

Lesson 9: Using the Temperature Sensor

The temperature sensor on the MC Trainer is a linear active
thermistor. These temperature sensors give out a voltage signal that
changes directly with temperature. This means the relationship
between the voltage output and the temperature is straight and direct,
making the data easier to read and use.

Project 9.00 Using the Temp Sensor

In this project you’ll learn how to read the voltage produced by the
temperature sensor. The temperature sensor on the MC Trainer is
tiny! It is the tiny black rectangle on the left of the OLED, above the
reset button.

Project Code:

//
// 9.00 - Using the Temperature Sensor

byte tempSensorPin = A3;

void setup() {
 pinMode(tempSensorPin, INPUT);
 Serial.begin(9600);

}

void loop() {
 int currentTemp = analogRead(tempSensorPin);

 Serial.print("The current temp value is: "); Serial.println(currentTemp);
 delay(1000);

}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of

106 Learn Arduino Programming

a new Arduino sketch and paste / type in the above text.

The temperature sensor works a lot like the potentiometer and LDR.
The difference is that this temperature sensor actually produces a
voltage based on the temperature. The potentiometer and LDR were
dropping a certain amount of voltage based on some condition.

The temperature sensor again produces an analog voltage based on
the temperature. This means that if we want to read that analog value
it needs to be on an analog pin. The temperature sensor is connected
to the analog pin A3 on the MC Trainer.

byte tempSensorPin = A3;

We are reading the voltage, so the pin is an INPUT.

 pinMode(tempSensorPin, INPUT);

In the loop() function, we analog read the voltage produced by the
temperature sensor.

 int currentTemp = analogRead(tempSensorPin);

After that, we print it onto the Serial port. Make sure to open the
Serial port to see the data being printed.

 Serial.print("The current temp value is: "); Serial.println(currentTemp);

So that we don’t flood the screen we add in a one second delay.

 delay(1000);

Try touching the temperature sensor and seeing how the values
change.

107
145

Project 9.01 Getting an Actual Temperature Reading

In this project you’ll learn how to convert the analog value read from
the sensor into an actual temperature. This can get a bit complicated
but it’s how many sensors work in the real world.

Project Code:

//
// 9.01 - Getting an Actual Temperature Reading

byte tempSensorPin = A3;

void setup() {
 pinMode(tempSensorPin, INPUT);
 Serial.begin(9600);

}

void loop() {

 float currentTemperature = ReadTemperature();

 Serial.print("The temp in C is: "); Serial.println(currentTemperature);
 Serial.print("The temp in F is: "); Serial.println(CtoF(currentTemperature));
 delay(1000);

}

/*
 This function reads a temperature in degrees C from the MCP9700AT-E/TT and
returns it.
*/
float ReadTemperature() {
 int currentTempReading = analogRead(tempSensorPin);

 float currentTempVoltage = currentTempReading * (5.0 / 1024.0);

 float temperature = (currentTempVoltage - .5) / .01;

 return(temperature);
}

/*
 This function converts a temperature passed in degrees C to degrees F and
returns it.
*/
float CtoF(float temp) {
 return ((temp * 1.8) + 32);
}
//

108 Learn Arduino Programming

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Before we look at the code let’s figure out how we are going to go
about getting an actual temperature reading. The first thing that we
need to find is the equation for converting the analog value read to a
temperature. This can be found in the datasheet for the part on page
10.

https://www.mouser.com/datasheet/2/268/MCP9700_Family_Data_S
heet_DS20001942-3132871.pdf

Datasheets can be very intimidating, even for seasoned engineers.
Take a look at the datasheet for the Atmega32u4 (The chip you’re
programming):

https://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-
bit-avr-atmega16u4-32u4_datasheet.pdf

It’s 438 pages!

The equation on page 10 states:

Vout = Tc * Ta + V0degreesC

Let’s break that down:

Symbol What it means

Vout Voltage produced by the
temperature sensor

Tc Temperature Coefficient

Ta Ambient Temperature

V0degreesC Voltage produced at 0 degrees
C

So, what do we know? Only the voltage read right now. Let’s go back
to the datasheet.

On page 4 we can find the temperature coefficient (10mV per degree
C), on page 3 we can find the V0degreesC (500mV) and what we are
trying to figure out is the ambient temperature.

Now we know the voltage being read (with analogRead), the
temperature coefficient, and the V0degrees, we can re-arrange the

https://www.mouser.com/datasheet/2/268/MCP9700_Family_Data_Sheet_DS20001942-3132871.pdf
https://www.mouser.com/datasheet/2/268/MCP9700_Family_Data_Sheet_DS20001942-3132871.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf

109
145

equation for ambient temperature:

1.) Vout = Tc * Ta + V0degreesC

2.) Vout – V0degreesC = Tc * Ta <- Subtracted V0degrees

3.) (Vout – V0degreesC) / Tc = Ta <- Divided by Tc

4.) Ta = (Vout – V0degreesC) / Tc <- Just re-written from #3

When we read the analog voltage value from the temperature sensor
it will be a value between 0 – 1023. Unfortunately, that is in the wrong
form for us. What we need is voltage, not a 10-bit value. In order to
convert from a 10-bit number to the voltage it represents we can use
the equation:

10bitValue * (5 / 1024)

For example, we would expect a value of about 2.5 with an analog
value of 512:

512 * (5 / 1024) = ~2.5v

We can use this equation to convert from 10-bit to voltage.

Now that we have all of the tools we need let’s look at how to use
them.

In the loop() function, we have created a variable of type float and
assigned it the value that the function ReadTemperature() will return.
All this does is run the function and assign the value it returns to the
currentTemperature variable.

 float currentTemperature = ReadTemperature();

In the ReadTemperature() function, we first take an analogRead of
the temperature sensor pin.

 int currentTempReading = analogRead(tempSensorPin);

After that we then convert that analog value read into a voltage and
assign it to a variable of type float. You may notice the “.0” on the
end of the numbers. This specifies these numbers as float type
numbers. The number “5” is an int and the number “5.0” is a float.
So, if we’re trying to do floating point math, we have to use the “.0”
with our numbers. If we did “5 / 1023“ the result would be 0!

110 Learn Arduino Programming

 float currentTempVoltage = currentTempReading * (5.0 / 1023.0);

Next, we use the equation we re-arranged earlier to convert to an
actual temperature. That value is assigned to a float type variable.

 float temperature = (currentTempVoltage - .5) / .01;

Then that value is returned.

 return(temperature);

Going back to the loop() function, we then Serial print the
temperature value out in Celsius and Fahrenheit.

 Serial.print("The temp in C is: "); Serial.println(currentTemperature);
 Serial.print("The temp in F is: "); Serial.println(CtoF(currentTemperature));

The CtoF function is there to convert from Celsius to Fahrenheit.

/*
 This function converts a temperature passed in degrees C to degrees F and returns
it.
*/
float CtoF(float temp) {
 return ((temp * 1.8) + 32);
}

A one second delay is used after the Serial prints to prevent flooding
of the Serial port.

 delay(1000);

Who knew reading temperature could be so complicated? Luckily,
these functions we made can just be copied and pasted into other
programs. This is why people create libraries!

111
145

Project 9.02 Doing Something Based on Temperature

In this project we will use the temperature data to change the color of
the Neopixels based on the temperature. The warmer the
temperature to more red the Neopixels will appear. The colder the
temperature sensor the more blue the Neopixels will appear.

Project Code:

//
// 9.02 - Doing Something Based on Temperature

#include <Adafruit_NeoPixel.h>

byte dataPin = 10;
byte numberOfPixels = 2;
byte brightness = 10;

byte redValue = 0;
byte greenValue = 0;
byte blueValue = 0;

byte tempSensorPin = A3;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);
void setup() {
 pinMode(tempSensorPin, INPUT);

 pixels.begin();
 pixels.setBrightness(brightness);

 Serial.begin(9600);
}

void loop() {

 float currentTemperature = ReadTemperature();

 Serial.print("The temp in C is: "); Serial.println(currentTemperature);
 Serial.print("The temp in F is: "); Serial.println(CtoF(currentTemperature));

 UpdatePixelColorBasedOnTemp(CtoF(currentTemperature));
 delay(1000);

}

/*
 This function takes a temperature in degrees F and updates the neopixels to
reflect the temperature.
 The hotter the temperature, the more red the neopixels.
 The colder the temperature, the more blue the neopixels.

112 Learn Arduino Programming

*/
void UpdatePixelColorBasedOnTemp(float temperature) {

 int blueValue = map(temperature, 70, 80, 255, 0);
 blueValue = constrain(blueValue, 0, 255);

 int redValue = map(temperature, 70, 80, 0, 255);
 redValue = constrain(redValue, 0, 255);

 Serial.print("Blue: "); Serial.println(blueValue);
 Serial.print("Red: "); Serial.println(redValue);

 pixels.setPixelColor(0, pixels.Color(redValue, 0, blueValue));
 pixels.setPixelColor(1, pixels.Color(redValue, 0, blueValue));
 pixels.show();
}

/*
 This function reads a temperature in degrees C from the MCP9700AT-E/TT and
returns it.
*/
float ReadTemperature() {
 int currentTempReading = analogRead(tempSensorPin);

 float currentTempVoltage = currentTempReading * (5.0 / 1024.0);
 float temperature = (currentTempVoltage - .5) / .01;

 return (temperature);
}

/*
 This function converts a temperature passed in degrees C to degrees F and
returns it.
*/
float CtoF(float temp) {
 return ((temp * 1.8) + 32);
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

This project is fairly simple thanks to the functions we wrote in the
last project. They are simply copied and pasted into this one.

The first thing that we need to do is include the Neopixel library.

#include <Adafruit_NeoPixel.h>

Next, we declare some standard variables and include the
constructor for the Neopixel library.

113
145

byte dataPin = 10;
byte numberOfPixels = 2;
byte brightness = 10;

byte redValue = 0;
byte greenValue = 0;
byte blueValue = 0;

byte tempSensorPin = A3;

Adafruit_NeoPixel pixels(numberOfPixels, dataPin, NEO_GRB + NEO_KHZ800);

After that in the setup() function, we set the pinMode of the analog
pin connected to the temperature sensor, initialize the Neopixels, and
setup Serial communication.

void setup() {
 pinMode(tempSensorPin, INPUT);

 pixels.begin();
 pixels.setBrightness(brightness);

 Serial.begin(9600);
}

The loop() function starts just like the last project did. First, we get
the current temperature.

void loop() {

 float currentTemperature = ReadTemperature();

Next, the temperature is printed out in Celsius and Fahrenheit.

 Serial.print("The temp in C is: "); Serial.println(currentTemperature);
 Serial.print("The temp in F is: "); Serial.println(CtoF(currentTemperature));

Let’s take a look at the next function in the loop(),
“UpdatePixelColorBasedOnTemp”. From the function description
we know that this function takes a temperature in degrees Fahrenheit
and updates the Neopixels to reflect that temperature. This is why the
temperature is passed to the function with the CtoF function.

 UpdatePixelColorBasedOnTemp(CtoF(currentTemperature));

Inside the function we can see what is really happening. First the blue
value is mapped to the temperature range of 70 – 80 degrees F.

114 Learn Arduino Programming

The parameters in this implementation of the map function are a bit
different than usual. You’ll see that the higher end of the output range
is mapped to the lower end of the temperature range, and vice versa.
This means that when the temperature is 70 degrees the output will
be 255 and when the temperature is 80 degrees the output will be 0.
This is an easy way to invert the output range to go from high to low.
We need this because as the temperature gets lower, we want a
larger blue value.

 int blueValue = map(temperature, 70, 80, 255, 0);

Then the constrain function is used to ensure we stay in the proper
output range.

 blueValue = constrain(blueValue, 0, 255);

Next, we will use the map function normally to map the temperature
range to the red output range. The constrain function is used to keep
the values in the proper range.

 int redValue = map(temperature, 70, 80, 0, 255);
 redValue = constrain(redValue, 0, 255);

Then these values are printed out onto the Serial port.

 Serial.print("Blue: "); Serial.println(blueValue);
 Serial.print("Red: "); Serial.println(redValue);

After that, the Neopixels are loaded and updated.

 pixels.setPixelColor(0, pixels.Color(redValue, 0, blueValue));
 pixels.setPixelColor(1, pixels.Color(redValue, 0, blueValue));
 pixels.show();
}

Going back to the loop() function, after the
UpdatePixelColorBasedOnTemp function, a small delay is
implemented to keep the Serial port from flooding and the loop() is
ended.

 delay(1000);

}

115
145

Lesson 10: Using the IR Receiver and Emitter

An infrared emitter and detector are paired electronic devices that
enable wireless communication and sensing applications using
infrared light. These components are found in a wide range of
devices, including remote controls, security systems, and obstacle
detection systems for robotics.

Project 10.00 Decoding IR

This Arduino sketch is designed to receive and decode infrared
signals. When you point a remote at the MC Trainer, the decoded
results are printed to the Serial Monitor.

Project Code:

///
// 10.00 Infrared Receiver

#include <IRremote.h>

byte IRRecv = 17;

void setup() {
 Serial.begin(9600);
 IrReceiver.begin(IRRecv);
}

void loop() {
 if (IrReceiver.decode()) {
 IrReceiver.printIRResultShort(&Serial);
 IrReceiver.resume();

116 Learn Arduino Programming

 }
}
///

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Before we do anything, we need to install the IRremote Library. You
can do this by going to Tools -> Manage Libraries, and type in
“IRremote”. It looks like this:

Click install. If it asks you to install dependencies go ahead and do
so.

For reference, you can include it into a project by going to Sketch ->
Include Library, and click “IRremote”. This does not need done in this
sketch as it is already included.

The library reference where you can find all of the functions avaliable
can be found here:

https://github.com/Arduino-IRremote/Arduino-IRremote

In the setup() function we initialize the IR receiver on digital pin 17
using the begin() method from the IRremote library.

 IrReceiver.begin(IRRecv);

The loop() function continuously checks for incoming IR signals. It
uses the decode() method to check if a signal has been received. If a
signal has been received the decode() method then returns a one
and the if-statement code executes.

 if (IrReceiver.decode()) {

If a signal is received, it then prints a short summary of the decoded
data to the Serial Monitor using the printIRResultShort function.
The data printed includes the protocol used, the address, command,

https://github.com/Arduino-IRremote/Arduino-IRremote

117
145

and raw data. Much like the “&Wire” don’t worry too much about what
the “&Serial” that we pass is really doing. Just know we need to pass
that to print out the data.

 IrReceiver.printIRResultShort(&Serial);

It then resumes the receiver to keep listening for new signals using
the resume() function.

 IrReceiver.resume();
 }
}
///

Make sure and open the Serial monitor to see what is being printed.

Now that you can see what the signal that your remote is sending,
you can use the IR emitter to copy that signal.

The data that I got from my remote was:

“Protocol=NEC Address=0x0 Command=0x9 Raw-
Data=0xF609FF00 32 bits LSB first”

Let’s break that data down:

Section Data

Protocol=NEC This means the infrared signal uses the NEC
protocol, a common infrared protocol used in
consumer electronics.

Address=0x0 The address is used to specify the target
device that should respond to this signal. In
this case, the address is 0x0, which usually
indicates a generic device.

Command=0x9 The command portion of the signal tells the
device what to do. In this case, the command
is 0x9.

Raw-
Data=0xF609FF00

This represents the raw data of the signal
received by the IR receiver. This is typically a
sequence of pulse and space lengths that
make up the actual signal. The raw data is
useful for debugging or for cases where the
protocol, address, and command don't
adequately represent the signal.

118 Learn Arduino Programming

32 bits LSB first This indicates that the data is 32 bits long and
that it's being read from the least significant bit
(LSB) first. This is important for correctly
interpreting the raw data.

We can use this data to emulate the remote with the IR emitter LED.

Project 10.01 Sending IR

This project aims to replicate the functionality of an IR remote control.
We'll be using a push-button switch to trigger the sending of specific
IR signals, which can be read by an IR receiver. This can be used to
do things like turn on a TV!

Project Code:

//////////////////////////////////////
// 10.01 Sending Data

#include <IRremote.h>

byte sCommand = 0x9;
byte ADDR = 0x0;

byte SW1 = 1;
bool pressed = 0;

byte IRPin = 5;

void setup() {
 Serial.begin(9600);
 IrSender.begin(IRPin);
 pinMode(SW1, INPUT);
}

void loop() {
 if (digitalRead(SW1) == pressed) {
 Serial.println();
 Serial.print("Send now: address=0x");
 Serial.print(ADDR, HEX);
 Serial.print(", command=0x");
 Serial.println(sCommand, HEX);

 IrSender.sendNEC(ADDR, sCommand, 0);

 delay(250);
 }

119
145

}
//////////////////////////////////////

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

In the setup() function, the IR emitter is started on pin 5 using
IrSender.begin(IRPin).

 IrSender.begin(IRPin);

In the loop() function, SW1 is monitored to see if it has been
pressed.

 if (digitalRead(SW1) == pressed) {

If the button has been pressed, information about what is being sent
is printed using the Serial methods. You’ll notice that some of the
Serial.print methods have two parameters. You can use keywords
such as DEC, HEX, BIN, OCT to print numbers in a specific number
base. Data used with the IR protocol is generally in hexadecimal, so
we print it in that fashion with the HEX keyword.

 Serial.println();
 Serial.print("Send now: address=0x");
 Serial.print(ADDR, HEX);
 Serial.print(", command=0x");
 Serial.println(sCommand, HEX);

Next, the data is actually sent with the IrSender.sendNEC method.
There are three parameters to this method. The first parameter is the
address that the data should be sent to, the second parameter is the
data to be sent, and the last parameter is the number of times the
data should be repeated. Sometimes it is useful to repeat the signal a
few times to ensure it makes it to the intended device.

 IrSender.sendNEC(ADDR, sCommand, 0);

What if the data is not the NEC protocol? This library supports a wide
range of protocols. They are listed here:

Protocol Method

NEC IrSender.sendNEC()

Sony IrSender.sendSony()

RC5 IrSender.sendRC5()

RC6 IrSender.sendRC6()

120 Learn Arduino Programming

Dish IrSender.sendDISH()

JVC IrSender.sendJVC()

Samsung IrSender.sendSAMSUNG()

LG IrSender.sendLG()

Whynter IrSender.sendWhynter()

COOLIX IrSender.sendCOOLIX()

Denon IrSender.sendDenon()

Sharp IrSender.sendSharpRaw()

Panasonic IrSender.sendPanasonic()

Sanyo IrSender.sendSanyo()

Mitsubishi IrSender.sendMitsubishi()

Apple IrSender.sendApple()

Pronto IrSender.sendPronto()

LEGO Power
Functions

IrSender.sendLegoPowerFunctions()

Bose Wave IrSender.sendBoseWave()

Metz IrSender.sendMetz()

MagiQuest IrSender.sendMagiQuest()

RCMM IrSender.sendRCMM()

Some of these methods may take different parameters so consult the
library reference, or simply Google it before using.

The loop is then ended with a delay if the button was pressed as a
crude debounce.

 delay(250);
 }
}
//////////////////////////////////////

121
145

Lesson 11: Emulate Mouse

Project 11.00 Using the Board as a Mouse

The MC trainer can also act like a mouse on a computer! This
functionality is unique with microcontrollers. In this project you’ll learn
how to use it as such!

Project Code:

//
// 11.00 - Using The Board As A Mouse

#include "Mouse.h"

byte SW1 = 1;
byte pressed = LOW;

void setup() {
 pinMode(SW1, INPUT);

 Mouse.begin();
}

void loop() {
 if (digitalRead(SW1) == pressed) {

 for (byte x = 0; x < 100; x++) {
 Mouse.move(1, 0, 0);
 }

 for (byte x = 0; x < 100; x++) {
 Mouse.move(0, 1, 0);
 }

 for (byte x = 0; x < 100; x++) {
 Mouse.move(-1, 0, 0);
 }

 for (byte x = 0; x < 100; x++) {
 Mouse.move(0, -1, 0);
 }
 }

 //You can also:
 /*
 Click the mouse:
 Mouse.press(MOUSE_RIGHT);
 Mouse.press(MOUSE_MIDDLE);
 Mouse.press(MOUSE_LEFT);

122 Learn Arduino Programming

 Release the mouse:
 Mouse.release(MOUSE_RIGHT);
 Mouse.release(MOUSE_MIDDLE);
 Mouse.release(MOUSE_LEFT);

 */
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Before you write a program that includes mouse functionality it is
important to be able to control it. In this project we don’t activate the
mouse functionality unless a button is pressed. When you plug the
MC Trainer in, you don’t want your mouse going crazy!

The first thing that we need to do is include the proper library. There
is no need to install this library as it comes standard with the Arduino
IDE. All you’d have to do is type in “ #include “Mouse.h”.

#include "Mouse.h"

Next, we need to include some variables to be used with the button.

byte SW1 = 1;
byte pressed = LOW;

In the setup() function, we need to set the pinMode of the button and
initialize the mouse functionality. Initializing the MC Trainer as mouse
can be done with the Mouse.begin() method.

void setup() {
 pinMode(SW1, INPUT);

 Mouse.begin();
}

In the loop() function, we check to see if the button has been pressed
before using the mouse functionality.

void loop() {
 if (digitalRead(SW1) == pressed) {

Once SW1 has been pressed, we can use the Mouse.move method
to move the mouse! The first parameter is how many pixels to move
in the x direction, the second is how many pixels to move in the y

123
145

direction and the last is how many lines to scroll. The mouse will
move instantly so it has been put into a series of for-loops and run a
certain number of times to make incremental changes instead (So we
can see it change).

 for (byte x = 0; x < 100; x++) {
 // x y scroll
 Mouse.move(1, 0, 0);
 }

 for (byte x = 0; x < 100; x++) {
 // x y scroll
 Mouse.move(0, 1, 0);
 }

To move in the opposite direction all you have to do is pass it a
negative value.

 for (byte x = 0; x < 100; x++) {
 // x y scroll
 Mouse.move(-1, 0, 0);
 }

 for (byte x = 0; x < 100; x++) {
 Mouse.move(0, -1, 0);
 }
 }

Here are some additional functions you can use with the Mouse.h
library.

 //You can also:
 /*
 Click the mouse:
 Mouse.press(MOUSE_RIGHT);
 Mouse.press(MOUSE_MIDDLE);
 Mouse.press(MOUSE_LEFT);

 Release the mouse:
 Mouse.release(MOUSE_RIGHT);
 Mouse.release(MOUSE_MIDDLE);
 Mouse.release(MOUSE_LEFT);

 */
}
//

124 Learn Arduino Programming

Lesson 12: Emulate Keyboard

Project 12.00 Using the Board as a Keyboard

The MC trainer can also act like a keyboard!

Project Code:

//
// 12.00 - Using the Board as a Keyboard

#include "Keyboard.h"

byte SW1 = 1;
bool pressed = LOW;

int pressCounter = 0;

void setup() {
 pinMode(SW1, INPUT);

 Keyboard.begin();
}

void loop() {
 while (digitalRead(SW1) != pressed) {
 ;
 }

 pressCounter++;

 Keyboard.print("You have pressed the button: ");
 Keyboard.print(pressCounter);
 Keyboard.println(" times!");

 delay(500);
}
//

*If you’re copying and pasting the code, or typing from scratch, delete everything out of
a new Arduino sketch and paste / type in the above text.

Just like the previous project, we need to put the keyboard on some
kind of control. We don’t want thousands of keypresses being sent to
the computer at a time!

Also like the other project, to use the keyboard functionality we need
to include a library that comes with the Arduino IDE by default. We
can do that by simply typing in “ #include "Keyboard.h".

125
145

#include "Keyboard.h"

We then use some standard variables to represent the button.

byte SW1 = 1;
bool pressed = LOW;

In this program we are also going to use a variable to keep track of
the number of times the button has been pressed.

int pressCounter = 0;

Then in the setup() function, all we need to do is set the correct
pinMode for the button pin and initialize the keyboard with the
Keyboard.begin() function.

void setup() {
 pinMode(SW1, INPUT);

 Keyboard.begin();
}

In the loop() function, the first thing we do is wait until the button is
pressed.

void loop() {
 while (digitalRead(SW1) != pressed) {
 ;
 }

When the button is pressed, the program moves on from the while-
loop. Since the button has been pressed, we increment the
pressCounter variable.

 pressCounter++;

After that we can use the MC Trainer to type that information out onto
the screen. The print and println functions here work exactly the
same as the Serial versions.

 Keyboard.print("You have pressed the button: ");
 Keyboard.print(pressCounter);
 Keyboard.println(" times!");

A crude debounce is then implemented to keep the button from being
read too many times.

126 Learn Arduino Programming

 delay(500);
}
//

To see the text being printed out open a text editor, click on the
screen, and press the button.

You have pressed the button: 1 times!
You have pressed the button: 2 times!
You have pressed the button: 3 times!
You have pressed the button: 4 times!
You have pressed the button: 5 times!
You have pressed the button: 6 times!
You have pressed the button: 7 times!
You have pressed the button: 8 times!
You have pressed the button: 9 times!
You have pressed the button: 10 times!

127
145

Electronics

You don’t need to know much about electronics to do the projects in
this book. However, it’s a good idea to understand a few concepts
that will take you a long way in electronics. They are:

1.) Electrical potential (voltage). This is the difference in
electrical charge between two points. You can think of
electrical potential as the “pressure” that drives electricity
through a circuit. When high potential exists between two
points, the results can be dramatic; the difference in electrical
potential between the sky and ground causes lightning to
strike. Electrical potential is measured in volts and is often
represented by the letter V.

2.) Electrical resistance. This measures how difficult it is for

electricity to travel between two points. Take a battery, for
instance. When the battery sits on your table by itself, no
electricity will flow between the terminals because there isn’t a
suitable path between them. You could argue that the
terminals are connected by air, but the electrical resistance of
air is very high (it takes a lot of volts to make lightning travel
through air). If you attach a wire to the terminals, electricity will
flow. Don’t do this, by the way, because the resistance of a
piece of wire is very low, and so much electricity will flow that
you will damage the battery. All paths that electricity takes
need a fair amount of resistance to avoid damaging the circuit.
Resistance is measured in ohms. It is represented by the letter
R or the Greek symbol Ω (omega).

E
le

c
tr

o
n

ic
s

128 Learn Arduino Programming

3.) Electrical Current. Current is the amount of electricity that
flows from a point of high potential to a point of low potential.
Current is what does the work in electronics. It is measured in
amperes, or amps, and is represented by the letter I.

The real beauty of electronics is that these three concepts are related
to one another in a simple way called Ohm’s law. Ohm’s law boils
down to an equation that can be written in a few different ways. The
most common way is:

I = V/R

This means that the current that will flow through a path equals the
difference in electrical potential at the two ends of the path, divided
by the path's resistance. For example, if you had a 6-volt battery and
you created a path with a resistance of 2 ohms:

I = 6/2 = 3 amps of current

This is a lot of current for an Arduino project! We often create
circuits where something like 10 milliamps (mA) of current will flow

(1 mA = 1/1000th of an amp).

You can rearrange the parts of Ohm’s law to calculate voltage,
resistance, or current from the other two parts. One common way to
rearrange it is:

V = I x R

If we know how much current flows through a path and its resistance,
we can calculate the change in electrical potential between any two
points on the path. This is called a “voltage drop.” We use this
part of Ohm’s law to measure things like the position of a dial in a
potentiometer.

E
le

c
tr

o
n

ic
s

129
145

Electricity flows like Water

It’s easier to wrap our heads around these concepts by thinking of
electricity like the flow of water. We can create high potential by
filling a water tower. This is analogous to a difference in voltage. And
just like charging a battery, it takes energy to fill a water tower (the
law of conservation of energy is alive and well!). Water will flow if we
create a path between a point of high and low potential, just like an
electrical current. The path in our analogy could be a pipe that allows
water to flow from the water tower to the ground. In an electrical
circuit, the path consists of copper wire and electronic components
that electricity will flow through.

130 Learn Arduino Programming

The flow rate will depend on the difference in potential and the path's
resistance (remember I = V/R?). If we use a big pipe, water will flow
quickly; a narrow section of pipe will add resistance and slow the flow
rate through the entire circuit. We often use special devices called
resistors to slow the rate of electrical current through our circuits.

Like electricity, we can capture the energy of the flowing water to do
work. We capture electrical energy to turn on lights, make sounds,
turn motors, heat and cool objects, and even do the math!

Circuits

A circuit is a set of electronic components and paths between them
that do one or more jobs. All circuits need a voltage source, a path
for current to flow, and usually some type of work to do. A very
simple circuit could be a battery, a light bulb, and two wires that
provide a path between the battery and the bulb. Circuits always
contain a way for electricity to flow from the point of high potential to
a point of low potential. This means we can trace a path from the
positive side of the battery or other power source, through each
component, to the negative side.

We often need a way to “make” or “break” the circuit. Returning to our
simple circuit, if we just put these components together, the light bulb
would light until the battery died. If we put a switch in the circuit, we
could “break” the circuit (also called an “open” circuit) by interrupting
the path on one of the two wires. We could then switch the light on to
“make” the circuit (also called a “closed” circuit) when we needed it.

131
145

The circuits in most electronic devices are arranged on printed circuit
boards (PCBs). PCBs are hard plastic boards with electronic
components soldered onto them. Instead of round wires, PCBs use
“traces” to connect the electronic components. These are thin, flat
strips of copper on the surface of the boards. The traces are
commonly covered with a green finish that gives PCBs their
characteristic look. The MC Trainer is a PCB with all the circuits
needed to complete the projects in this book.

Electronic Components

If you look inside a computer or another electronic device, you’ll see
components with different shapes, sizes, and colors arranged on a
circuit board. It looks like a miniature city arranged on a green field.
A circuit board is like a city
– each component has a job and is linked by electronic “roads” (the
traces).

Let’s take a look at some electronic components on the MC Trainer
and the jobs that they do. Electronic circuits are mapped out in
schematics that show how all components are connected. Each
component has a unique symbol. Schematics are not arranged the
same way as the layout of circuit boards. That would be confusing.
Instead, schematics are arranged to make it easy to see how parts
are connected.

E
le

c
tr

o
n

ic
s

132 Learn Arduino Programming

Positive supply voltage: supplies the
circuit with high electrical potential. It can
originate from the positive terminal of a
battery or a source like a USB hub. It is
sometimes also called VCC or VSS.

Ground: the negative supply voltage that
supplies the circuit with low electrical
potential. The ground symbol is often used in
circuit schematics instead of showing the
connection back to the negative terminal of
the battery or power supply. It is sometimes
also called GND, VDD, or VEE.

Capacitor: a device holding a small
electrical charge, like a tiny battery.
Capacitors are often used to avoid rapid
changes in voltage as different devices use
different amounts of current.

Diode: a device that acts as a one-way door.
Current will flow when the anode voltage (left
side of the symbol) is higher than the
cathode voltage (right side). Current will not
flow in the reverse direction.

Light-Emitting Diode (LED): a one-way
door that lights up when current flows
through it. LEDs come in many different
colors and sizes. Some LEDs emit infrared
light that is invisible to
the human eye but can be sensed by an
infrared transistor.

133
145

Piezo Element: brings sound to our projects.
The piezo element is a special material that
changes shape slightly when voltage is
applied. We can make it emit different tones
by rapidly turning the voltage on and off at
different rates. The piezo element also
generates a voltage when it is forced to
change shape. In some of our projects, we
will use this property to sense a finger
tapping on it.

Resistor: reduces current in a circuit
(remember I = V/R). Resistors are used to
control how much current will flow through
different parts of a circuit. We usually want
only a few milliamps of current flowing
through our microcontroller and the rest of
the circuit.

Potentiometer: a voltage divider. It’s a
resistor with a “brush” connected to a third
terminal. The voltage of the third terminal
depends on the position of the brush. They
are commonly used as position sensors or in
dials. You can learn more about
potentiometers and other voltage dividers by
looking up “voltage dividers” on Wikipedia.

Light Dependent Resistor: LDR, also
known as a photoresistor, is an electronic
component that changes its resistance
based on the amount of light it is exposed to.
The resistance decreases as the intensity of
light increases, and vice versa.

E
le

c
tr

o
n

ic
s

134 Learn Arduino Programming

Temperature Sensor: The MCP9700AT-
E/TT is a Microchip Technology analog
temperature sensor device. It converts
temperature from -40°C to +125°C to a linear
analog voltage output. The voltage output of
the MCP9700AT-E/TT is proportional to the
measured temperature, which makes it
straightforward to interpret the output signal.

IR Transmitter: is a device that is used for
communication. Brief pulses of infrared light
do this communication. Infrared light is
invisible to the human eye and is a non-
intrusive way to send information.

IR Receiver: is a device that allows the
detection of infrared light. These are used in
televisions, DVD players, air conditioners,
and more.

Neopixel: is a unique type of RGB LED that
allows for fine control of 3 differently colored
LEDs in one. Neopixels allow for easy
connection of more LEDs at no more cost
than microcontroller pins.

OLED: stands for organic light-emitting
diode. This small screen allows for real-time
feedback and interaction with projects.

Momentary Switch: when pressed, they
either complete a circuit (a normally open
switch) or “break” the circuit (a normally
closed switch). The button returns to its
normal position when it is released.

This chapter covered the basics of electronics and introduced
some common electronic components. The next chapter
examines how these components make the MC Trainer board

135
145

work.

Circuits

Let’s look closer at the circuits on the board that we can use in our
sketches. Each circuit is connected to the microcontroller through one
or more I/O pins.

136 Learn Arduino Programming

Circuit 1: Single LEDs

Four single LEDs are controlled by digital pins 8, 13, 6, and 7. There
are four separate circuits, but they all do the same thing. Each LED
is controlled by programming the pin on the 32U4 chip to enter a
HIGH or LOW voltage state. The LED is turned on when the pin
voltage is set to HIGH, which creates a difference in electrical
potential between the pin and ground. This causes current to flow
through the LED.

Μ
C

 T
ra

in
e
r

B
o

a
rd

137
145

Circuit 2: Momentary Switches (Buttons)

The MC Trainer has two momentary push buttons. SW1 is on the left
side of the board and is measured by digital pin 1, and SW2 is on the
right and measured by pin 0. The switches are normally open. A 10K
resistor acts as a “pull up,” which weakly pulls each pin to 5V so that
they consistently will read a digital HIGH when the switch is open.
Pushing the switch moves the pin to digital LOW.

138 Learn Arduino Programming

Circuit 3: Neopixels

Digital pin 10 on our MC Trainer is interfaced with a WS2812B, an
individually addressable RGB LED. The WS2812B is a smart LED
incorporating a light-emitting part and a control circuit into a single
package. When the MC Trainer sends signals to the WS2812B via
digital pin 10, the LED responds by producing colored light, with the
color determined by the signals it receives. Because of the integrated
control circuit, each WS2812B LED can be individually controlled
even when many LEDs are chained together, creating complex,
multicolor patterns, and effects.

C
ir

c
u

it
s

B
o

a
rd

139
145

Circuit 4: Piezo Element

This is a simple circuit. The element is powered by digital pin 12. A
1k resistor limits current to protect the pin and device. The pin is
rapidly switched between digital HIGH and LOW to make it vibrate
and emit a tone.

140 Learn Arduino Programming

Circuit 5: Infrared Receiver

Digital pin 17 on our Arduino Leonardo is connected to an infrared
(IR) receiver. The IR receiver is a specialized electronic component
designed to sense infrared light which falls beyond the range of
human vision. This IR receiver detects infrared signals, transforms
them into electrical signals, and forwards them to the MC Trainer.
When an IR signal is detected, it influences the output voltage of the
receiver.

C
ir

c
u

it
s

B
o

a
rd

141
145

Circuit 6: Infrared Emitter

Digital pin 5 on our microcontroller is connected to an infrared (IR)
LED. An IR LED, similar to a normal LED, emits light when it is
energized. However, unlike a regular LED, the light emitted from an
IR LED is invisible to the naked eye as it falls within the infrared
spectrum. When digital pin 5 sends a HIGH signal to the IR LED, it
turns on and emits infrared light. Conversely, when the pin sends a
LOW signal, the IR LED turns off and stops emitting light.

142 Learn Arduino Programming

Circuit 7: Thumbwheel Potentiometer

Analog pin A0 on our microcontroller is interfaced with a
potentiometer, a type of resistor that allows for adjustable resistance.
The unique characteristic of a potentiometer is that its resistance
varies as you turn its knob or slide its lever. As the resistance of the
potentiometer changes, the voltage observed at pin A0 also adjusts.
This change in voltage can be measured and interpreted by the
microcontroller to understand the current setting of the potentiometer.

Μ
C

 T
ra

in
e
r

B
o

a
rd

143
145

Circuit 8: Light Dependent Resistor

Analog pin A2 is connected to a light-dependent resistor (LDR), a
component that varies its resistance in response to changes in light
intensity striking its surface. This behavior of the LDR, sometimes
referred to as photo resistivity, can be used as a gauge to measure
and monitor ambient light conditions. As the resistance of the LDR
fluctuates with light intensity, so does the voltage across it. By
reading this voltage with analog pin A2, we can gain an insight into
the ambient light level.

Μ
C

 T
ra

in
e
r

B
o

a
rd

144 Learn Arduino Programming

Circuit 9: Temperature Sensor

Analog pin A3 on our microcontroller is connected to the
MCP9700AT-E/TT, a linear active thermistor IC. Much like how a
light-dependent resistor (LDR) changes its resistance with varying
light conditions, the MCP9700AT-E/TT alters its voltage output
relative to the temperature it detects. We can accurately deduce the
ambient temperature by monitoring the voltage change at pin A3
(connected to VOUT). This is possible because the MCP9700AT-
E/TT has a linear output, meaning that a predictable and consistent
voltage change corresponds to each degree of temperature change

Μ
C

 T
ra

in
e
r

B
o

a
rd

145
145

Circuit 10: OLED

The SSD1306 OLED display module is a compact screen that serves
as a valuable interface for real-time communication and feedback in
your projects. This display is connected to our MC Trainer via two
specific lines, SDA and SCL, which are used for data transfer and
clock synchronization, respectively, as per the I2C (Inter-Integrated
Circuit) protocol. The I2C protocol enables multiple devices to
communicate using two wires, simplifying the wiring process and
saving precious GPIO pins on the MC Trainer. The unique I2C
address for our SSD1306 module is 0x3C in hexadecimal, which
allows the MC Trainer to recognize and communicate with it amongst
any other I2C devices that might be connected.

146

Next Steps…

You’re not done learning Arduino at this point, you’re just beginning.
You’ve learned the basics of electronics and how to write programs.
You’ve gone through the projects that are built-in to the MC Trainer
circuit board. Hopefully, you have experimented with these projects,
making changes to learn more about how you can use Arduino to
interact with the physical world.

Now it’s time to create. Think of yourself as an artist. Your palette
contains computer codes, wires, and components. These are the
tools you can now use to create the next project. Undoubtedly, you
will still need to learn new things.

Like all artists, you will need supplies. You can do a lot more with
the MC Trainer than what we covered in this book. But eventually
you will need to get more components and an Arduino board with
headers to allow you to plug in wires. There are lots of kits available
that include an Arduino board, a solderless breadboard, jumper wires
and components. You can also put together your own set of
supplies. It’s a good exercise to start looking for specific parts rather
than just taking whatever happens to be in the kit.

You will also soon need to buy a soldering iron. I helped a friend start
with Arduino recently and he said that he enjoyed programming but
would never buy a soldering iron. He bought one within a few weeks.
You don’t need to spend a lot of money on a soldering iron, but you
should buy one with temperature control. Again, search Arduino

N
e
x
t

S
te

p
s

147
145

forums and other websites to find recommendations on a soldering
iron.

One of the best ways to keep learning is by coming up with a project
that you can’t do. Not yet at least. Pick something that’s over your
head. Then start thinking about how you can break that project
down into smaller pieces. What sensors, motors, servos, displays,
gears, and wheels are available to make your project sense the world
and react in an interesting way? Start searching the internet. Talk
with other people about what they are doing, or what they would like
to do if they had the right knowledge and tools.

Tackle one part of the project at a time. Figure out how to read a
sensor and output the results to the serial monitor. Remember to
make your code portable and reusable. For example, you can create
a function to read the sensor and pass the result to the next part of
the sketch where you decide what to do with the information. Now
start putting the pieces together. The first completed version of the
project will probably fall short of what you imagined (I still don’t have
a hovering robot that can follow me around). But you will keep
learning. It won’t be long before you’ll be amazed by how far you’ve
come.

Finally, don’t forget to give back to the Arduino community. You can
do this by posting code to forums or videos to YouTube. Functions
can be turned into libraries and made available to other users. This is
your time to contribute and show off a little. The virtual community of
Arduino is also turning into a physical community as people meet for
“Arduino Night” at Hacker spaces and other venues. It won’t be long
before it’s your turn to introduce someone new to the world of
Arduino.

P
ro

je
c
t

In
d

e
x

MC Trainer Pin Key

Pin

Element Description

0

SW2 Push Button Switch 2

1

SW1 Push Button Switch 1

5 IRPin Infrared Emitter

6 LED2 Single LED

7 LED3 Single LED

8

10

LED4

dataPin

Single LED

Neopixel Data In

12 piezoPin Transducer

13 LED1 Single LED

17 IRRecv Infrared Receiver

A0 potPin Thumbwheel Potentiometer

A2 LDR Light Dependent Resistor

A3 tempSensorPin Temperature Sensor

P
in

 K
e
y

